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In the February, 1964, issue of the Fibonacci Quarterly, Brother U. 
Alfred [ l ] advanced the conjecture (later proved by J. H. Halton p i ) that, 
when any Fibonacci number is divided by another Fibonacci number, one or the 
other of the least positive and negative residues is again a Fibonacci number. 
The object of this paper is to prove that the only Fibonacci-like sequence for 
which this is true is the Fibonacci sequence. If zero is excluded as a remain-
der, then the Lucas sequence has the above property. 

The proof falls naturally into two parts. The first part will be to show 
that every Fibonacci-like sequence, modulo any member of the sequence, is 
congruent to a sequence made up of a subsequence of the original sequence and 
the negatives of these values. The second part will be to show that these sub-
sequences are actually remainders of the divisor for only the Fibonacci and 
Lucas sequences. 

Obviously, a sequence has the property described above if and only if any 
non-zero integral multiple of it does. Since any divisor of two neighboring 
members of Fibonacci-like sequences divides every member of the sequence, 
we will consider only sequences with neighboring terms relatively prime. In 
what follows, H. will denote the i member of a general Fibonacci-like 
sequence defined by H. = H. + H. , where H0 and Hj are arbitrary. The 
set of integers will be denoted by I, the set of non-negative integers by P, 
and the set of natural numbers by N. 

PART I 

Since it is easily established by induction that 

H _Ll = F. H + F. ^ H 
m+k k m-i k+l m 

for all integers m and k, the following two lemmas readily follow. 
Lemma 1: H , . = F.H J (mod H ) for all integers i. 

m+i 1 m-i m . to 

Lemma 2: H . = F .H = (-l)i+1H ,. (mod H ) for all integers i. 
m-i -i m-i m+i m & 

298 
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It is known that any number must eventually divide one of the Fibonacci 

n u m b e r s , and that F ^ _ l = F n _ 2 F + ( - l ) n for all in tegers n. Applying these 

r e s u l t s and L e m m a 1, it i s not difficult to prove Lemmas 3 and 4. 

Lemma 3: Let n be any integer such that F = 0 (mod H ). Then 

H ^ = 0 (mod H ) . m±n m 

Lemma 4: F o r the n of Lemma 3, F 2 = (-1) (mod H ) . 
_ n „ 1 m ' 

Lemma 5: F o r the n of Lemma 3, and for all in tegers i, 

F H . = ( - l ) n + i + 1 H M. (modH ) . n - i m - i m-n+i m 

Proof: The proof i s by induction on i. Fo r i = 0, apply Lemma 3= 

F o r i = 1, apply Lemma 1. Assume that Lemma 5 holds for i = k - 1 and 

i = k - 2, or that 

F H n a = ( - l ) n + k H ^n a (mod H ) , n - i m-(k- l ) m-n+(k-l) m 

F H /f ov = ( - l ) n + k ~ 1 H Mn v (mod H ) . n - i m-(k-2) m-n+(k-g) m 

Subtracting the f i r s t formula from the second yields the expected r e su l t for i 

= k. Hence, the formula is c o r r e c t for all i E P . Lemma 2 can be used to 

extend the r e su l t to include negative in tegers . 

Lemma 6; Let t = nq + r . Then, if q G N and F_ = 0 (mod H ), 

H _,. = F F ^ H 4 (mod H ) . m-n+t r n - i m - i m 

Proof: The proof i s once again by induction on q. When q = 1, the 

express ion above becomes identical to L e m m a 1. Assume that Lemma 6 holds 

for q = k - 1, o r that 

H _,, = F. „ v F k ^H (mod H ) 
m-n+t t - (k- i )n n - i m - i m 
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m 
But, F , ,. * = F, , F + F, , F = F, . F (mod H ), s ince H t - (k- i )n t -kn n - i t-kn+i n t -kn n - i m 
divides F by hypothesis . Substituting back into the formula above, 

H - = F . . F k _ 1 H (mod H ). 
m-n+t t -kn n - i m - i m 

Hence, Lemma 6 is t rue for all q E N. 

Theo rem 1: F o r every i E I, t he r e ex i s t s a k E I , m - n ^ k 4 m, 

such that 

H. = ±H, (mod H ), 
I k m 

where n is the smal les t na tura l number such that F = 0 (mod H ). 
n m 

Proof: Let i = m - n + t, k = m - n + r , and t = nq + r , 0 L r L n. 

The c a s e q = 0 is t r iv ia l , s ince then t = p and i = k. The ca se q ^ 0 is 

equivalent to t < 0. But, by Lemma 2 and p rope r t i e s of congruences , 

H ^ = ( - l ) t + 1 H , A ( m o d H ) = ( - l ) t + 1 H . .. (mod H ) . 
m-n+t m-n+(-t) m - n m-n+(-t) m 

Since - t > 0, we need cons ider only the ca se t > 0 or q E N. By Lemma 6, 

H _,_. = F F q _ 1 H (mod H ). 
m-n+t r n - i m - i m 

By Lemma 1, 

F H = ( - l ) r + 1 H ( m o d H ). 
r m - i m - r m 

Substituting, 

H ^ = ( - l ) r + 1 F q ~*H (mod H ) . 
m-n+t n - i m - r m 

By Lemma 4, 

F 2 = ( - l ) n (mod H ) . n - i n r 

We must now dist inguish two c a s e s . 
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Case I : If q is odd, 

F q - i = (_1 )n(q- i ) /2 ( m Q d ^ ^ 

leading to H ,, = ±H (mod H ), where m - n 4 m - r £- m. 
to m-n+t m - r m -
Case 2: If q i s even, 

F q - i = ( _ 1 ) n (q-2) /2 F ( m o d H }< 
n - l n - i m 

By Lemma 5, 

F H = ( - l ) n + r + 1 H ^ (mod H ). 
n - i m - r m-n+r m 

Substituting these two r e s u l t s leads to 

H ^ = ( - l ) n q / 2 H M ( m o d H ). m-n+t m-n+r m 

where 0 4 r 4 n, s o m - n 4 m - n + r 4 m . 

In T h e o r e m 1, if H divides H., we can take k = m or k = m - n. m I 

While every H. divides some other m e m b e r of the sequence (see Lemma 3), 

it is n e c e s s a r y to notice that ze ro cannot appear as a m e m b e r of the subsequence 

of Theo rem 1 unless our Fibonacci - l ike sequence is the Fibonacci sequence i t -

self. Since ze ro can occur as a r e m a i n d e r in any Fibonacci - l ike sequence and 

s ince Theo rem 1, applied to Fibonacci n u m b e r s , leads to the t heo rem proved 

by Halton in [2"|, the only Fibonacci - l ike sequence which s t r ic t ly fulfills the 

r e q u i r e m e n t s of B ro the r Alfred1 s conjecture i s the Fibonacci sequence. 

In P a r t II, we will invest igate F ibonacc i - l ike sequences to de te rmine if 

any other sequence leaves r e s idues which, in all c a s e s , a r e e i ther ze ro or 

equal in absolute value to m e m b e r s of the or iginal sequence. 

PART n 

Now, if our sequence i s to have the des i r ed p roper ty , t he r e mus t be a 

set of e lements of the sequence whose absolute values a r e l e s s than that of 

H . The f i r s t observat ion to be made about F ibonacc i - l ike sequences is that m ^ 



302 RESIDUES OF FIBONACCI-LIKE TSEQUENCES Oct. 

far to the r ight and to the left, the absolute values i n c r e a s e without l imit . 

Hence, we need only examine a smal l section of the whole sequence to d e t e r -

mine if it has the des i red p roper ty . 

T h e r e must be at l eas t one H. with a minimal absolute value, and, b e -
1 ' 

cause of the divergence of the sequence in both d i rec t ions , t h e r e can be only a 

finite number of such minima. 

L e m m a 7: If H0 is a minimum, |H0( > 2, then, if H$ > 0, the only 

poss ib le r e m a i n d e r equal in absolute value to a m e m b e r of the original sequence 

upon division by H_ is ±H0, and if B1 < 0, the only such r ema inde r for H2 

i s ±H0. 

Proof: If H0 is negative, we will obtain the negative of the sequence for 

H0 posi t ive . Hence, cons ider only H0 > 2. None of Hj, H2, H_i, H_2
 c a n 

be a min ima, s ince each of H.j = H0 > 2, i = ±1, ±2, leads to a contradict ion. 

If Hi > 0, to avoid |Hj| < H0 for some i, for the t e r m s nea r H0 we 

can have only the following: 

H^3
 = 

H^2 = 
H_i = 

H0 -
Hi = 

H2 = 

3H0 + 2a = 

-(H0 + a) 

2H0 + a 

H0 

3H0 + a 

4H0 + a 

H i •+ a 

H. = L.^Hn + F.a , a > 1 , 
i l+i u l -

whe re L and F a r e respec t ive ly the n Lucas and Fibonacci n u m b e r s . 

If Hi < 0, with the conditions above we obtain 

H. - ( - l ^ L . ^ H o + Fxx) , 

o r a new sequence which, except for changes in sign, i s the sequence for H^ > 

0 ref lected about H0. hi pa r t i cu l a r , H2 = - ( H 0 + a ) . 

Notice that the sequence d iverges for I i | > 2. F r o m the sequence above, 

it i s easy to see that the only r e m a i n d e r in the sequence for H_ will be ±H0 

when H| > 0, and when Hj < 0, the only r ema inde r for H2 will be ±H0. 
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L e m m a 8: If H0 is a minimum, jH0[ ^ 1 , and ne i ther H2 nor H~2 

i s a minimum, then the only r ema inde r equal in absolute value to a m e m b e r of 

the or iginal sequence upon divis ionby H_2 is ±H0 when Hj > 0, and the only 

such r e m a i n d e r for H2 is ±H0 when B1 < 0. 

Proof: Avoiding |H2| = jH ĵ and |H_2| = |H0| as well as |H.| < jH0| 

l eads to the formulae of L e m m a 7. 

Lemma 9: If H0 is a minimum, |H0 | ^ 2, then the re exist number s 

H. which leave r e m a i n d e r s which a r e nei ther ze ro nor equal in absolute value 

to a m e m b e r of the or iginal sequence. 

Proof: If any number H. is divided by H0, the r e m a i n d e r mus t be l e s s 

in absolute value than H0, the minimum of the sequence* Thus , if |H0| ^ 2, 

all r e m a i n d e r s cannot be ze ro because any two adjacent t e r m s a r e re la t ive ly 

p r i m e , and any non-ze ro r ema inde r i s a number not equal in absolute value to 

a m e m b e r of the or iginal sequence,. So H0 is a number H. for the l emma. 

Suppose we exclude division by H0. Since (H0, H^ = 1, Hi is not a 

minimum. Ei ther Hi is posi t ive or Hi i s negat ive. Without l o s s of gene r -

ality (see proof of L e m m a 7), we a s s u m e that Hi i s negat ive. By T h e o r e m 1, 

if n2 i s the l eas t na tura l number such that F n = 0 (mod H2), and if t' = qn2 + 

r , 0 < r < n2, for q an odd number? 

H2-n2+t = ^Hg.r (mod H2 ) . 

Now, H 2 _ r = H0 if and only if r = 2. If |H0| > 2, |H2| > 3 = F 4 , SO n2 A 

4, and at l eas t 0 L r < 4. Set t = qn2 + 3 for an odd number q, say q -

1. Substituting, we have H5 = ±H_i (mod H2) , and ±H_i ^ ±H0 (mod H2) by 

inspecting the proof of Lemma 7. Thus , we can take i = 2. 

L e m m a 10; If |H0| = 1 is a minimum, and ne i ther H2 nor H_2 is a 

min imum, then the re exist numbers H. which leave r e m a i n d e r s which a r e 

ne i ther ze ro nor equal in absolute value to a number in the or iginal sequence. 

Proof: Without loss of general i ty , we assume that Hi < 0. If |H2| > 3, 

so that n2 ^ 4, by L e m m a 8 we can use the s a m e proof as for Lemma 9. 

Since H2 is not a minimum, H2 f 1 and H2 f - 1 . The only remain ing ca se 

is when |H2| = 2, which leads only to the following sequence, 

• " , - 2 3 , 14, - 9 , 5, - 4 , 1, - 3 , - 2 , - 5 , - 7 , -12 , -19 , - 3 1 , -50 , • • • , 
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where 31 = 8 (mod -23) while neither ±8 nor ±15 is in the original sequence. 
Theorem 2: The only sequences which possess the property that, upon 

division by a (non-zero) member of that sequence, the members of the sequence 
leave least positive or negative residues which are either zero or equal in abso-
lute value to a member of the original sequence are the Fibonacci and Lucas 
sequences. 

Proof: By Lemmas 9 and 10, for a sequence to possess the above prop-
erty, its minimum must be either H0 = 0 or |H0| = 1 with one of H2 and 
H_2 also a minimum. 

If H0 = 0, we can have only the Fibonacci sequence. 
Considering the cases |H0| = 1 and |H2j = 1; |H0| = 1 and |H_2| = 1, 

leads to the Lucas sequence and the negative of the Lucas sequence. 
It can be shown that, since when Theorem is applied to Lucas numbers, 

for each L, , IL, I < |L I or L, = 0 (mod L ), that the Lucas numbers do k k | m| k m 
indeed have the property of Theorem 2D The Fibonacci numbers are known to 
also have this property, as proved by Halton in [2] . 

We have used a minimum value greater than 2 as a criterion to determine 
if there exist numbers H. which leave remainders which do not satisfy Theo-
rem 2. Another criterion is that such numbers H. exist if and only if |H.I f 

i I J! 
JH .1 for any j , where the sequence has been renumbered so that either HQ 
is the minimum or HQ is between the two minima H* and H_i. This second 
criterion requires a longer proof, but not a difficult one, done by examining all 
cases. 

Examining several sequences to aid in the formulation of the proofs given 
here led to an interesting question. If Brother AlfredTs conjecture is not true 
for a whole sequence, can it be true for some elements of the sequence, and if 
so, which ones? 
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