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H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia. 

Prove 

n m 
F = y y £(m)s(k)F,, 

n Z^j Z^j n m k 
m=o k=o 

where Ŝ  * and ^r ' are Stirling numbers of the first and second kindsf r e -
r r th 

spectively3 and F is the n Fibonacci number. 

H-124 Proposed by J . A , H. Hunter, Toronto, Canada 

Prove the following identity* 

F2 L2 _ F2 L2 = FonFo/m+T1x 
m+n m+n m m m <HHi+n) 

th where F and L denote the n Fibonacci and Lucas numbers, respectively. 

435 
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H-125 Proposed by Stanley Rabinowi tz, Far Rockaway, New York 

Define a sequence of positive integers to be left-normal if given any string 
of digits, there exists a member of the given sequence beginning with this string 
of digits9 and define the sequence to be right-normal if there exists a member 
of the sequence ending with this string of digits. 

Show that the sequences whose n terms are given by the following are 
left-normal but not right-normal. 

a) P(n), where P(x) is a polynomial function with integral coefficients. 

tli 
b) P , where P is the n prime. 

c) n! 

th d) F , where F is the n Fibonacci number. ' n n 

SOLUTIONS 
EUREKA! 

H-59 Proposed by D. W . Robinson, Brsgham Young Univers i ty , Provo, U tah . 

Show that if m > 2* then the period of the Fibonacci sequence 0 ,1 , 2 ,3 , 
1 

that 
, F , • • • reduced modulo m is twice the least positive integer, n, such 

F ^ = (- l )nF (mod m) 
n+i v ; n-i v ; 

Solut ion by James E. Desmond, Tallahassee, F lo r ida . 

Let s be the period of the Fibonacci sequence modulo m. Then by defin-
intion, s is the least positive integer such that 

(1) F = 1 (mod m) and F = 0 (mod m). 
s~i s 

By the well-known formula 
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F , F - F2 = (-1) s+i s-i s v ' 
s 

We find that 1 = (-1) (mod m) which implies* since m > 29 that s =.2t for 
some positive integer t It is easily verified that 

t t+i 
(2) F2 t-i = FtLt_i + (-1)X = F t ^ L t + (-1)* . 

Since s = 2t we have by (1) and (2) that 

(3) ^ t^ t - i - ° (mod KI) if t is even, and 

(4) F ^ L t = 0 (mod m) if t is odd 

It is well known that 

(5) F 2 t = F t L t , and 

(6) (L t - i ,L t ) = (Ft- i , F t ) = 1 . 

Thus by (1), (3), (4), (5), and (6) we have 

F, = 0 (mod m) if t is even, and 
L, = 0 (mod m) if t is odd9 i8 e. , 

t+i 
Ft+i + (-1) F t - i = 0 (mod m) . 

n+i Now? let n be the least positive integer such that F + (-1) F _ = 0 
(mod m) and we obtain n < t We also find that F = 0 (mod m) if n is 
evens and L = 0 (mod m) if n is odd. Thus by (2) we havea F2 n-i = 1 
(mod m) and by (5), F 2 n = 0 (mod m). Since s is the period modulo m, it 
follows by definition that 2t = s < 2n„ Hence n = t. 

RESTRICTED UNFRIENDLY SUBSETS 

H-75 Proposed by Efouglas Lind, University of Virginia, Charlottesville, Virginia. 
Show that the number of distinct integers with one element ns all other 

elements less than n and not less than k, and such that no two consecutive 



438 ADVANCED PROBLEMS [Dec. 

integers appear in the set is F , . 

Solution by J . L. Brown, Jr . j r Ordnance Research Laboratory, State Co l lege , Pa. 

Since each admissible set of integers must contain ns any given admis-
sible set is uniquely determined by specifying which of the remaining n - k - 1 
integers (k, k + 1, k + 2, • • • , n - 2) are included in the se t (Note that the 
integer n - 1 cannot be included since n is in each set and consecutive inte-
gers are not permitted, ) For each sets this information can be given concisely 
by a sequence of n - k - 1 binary digits, using a 1 in the m place (m = 
1, 2, • • • , n - k - 1) if the integer k + m - 1 is included in the set and 0 in 
the m place otherwise, 

If we require additionally that the terms of each such binary sequence 

(alsa2r •8 » a
n _k- i ) s a t i s f y ai<*i+i = ° f o r i = 1» 2, • • • , n - k - 2, then this 

requirement is equivalent to the condition that no two consecutive integers 
appear in the corresponding set. But the number of distinct binary sequences 
of length n - k - 1 satisfying a.a. , = 0 for i > 1 is known to be F , , , , to J & I i+i (n-k-i)+2 
= F , as required. [See The Fibonacci Quarterly, Vol. 2, No. 3, pp. 166-
167 for a proof using Zeckendorf's Theorem. ] 

FIBONOMIAL COEFFICIENT GENERATORS 

H-78 Proposed by Verner E. Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

(i) Show 

n - i 
x 

« - *> m=, 

(?) where 1 J are the binomial coefficients* 

(ii) Show 
uu 

-E[T] m 
X (1 - x - x2, 

v ; m=o 
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(1 - 2x - 2x2 + x; 
m 
2J 

m 

m=o 

(1 - 3x - 6x2 + 3x3 +X4) + x4x Z-/L3J 
m 

m=o 

where a r e the Fibonomial coefficients a s in H-639 Apr i l 1965, Fibonacci 

Qua r t e r ly and H-72 of Dec, 1965, Fibonacci Quar te r ly . 

The genera l iza t ion i s : Let 

m =J2(~ i) h(h+i)/2 

h=o 

then show 

k - i 

f(x) Er m 
| _ k - 1 

m x , (k > 1) . 

m=o 

Solution by L. Carlifz, Duke University. 

(i) This i s a specia l c a se of the binomial theorem,, 

(ii) The genera l r e su l t s can be viewed a s the q-analog of (i), namely 

k - i 

n d-qV î: {"W • 
3=o j - o 

where 

•k + j - i l - ( i - q
k ) q - a k + 1 ) - - - a - a ^ - 1 ) 

] ' ( l - q ) ( l - q 2 ) - . . ( l - q J ) H'1} 
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We shall also need 

k - i 

n d-qjx) = E H i ^ ' I f j z ! 
3=0 3=0 

Now take q = j3/a , <* = fal +Vs), j3 = {(1 -VH). Then 

F F * • • F / k \ _ _ ^ a - j ( k - j ) x k x k - i "k-j+i = a - (k- i ) j f k l 

(Compare ''Generating Functions for Powers of Certain Sequences of Numbers," 
Duke Mathematical Journal, Vol. 29 (1962), pp. 521-538, particularly p. 530.) 

Since 

we get, after replacing x by a x, the identity 

k-i - i 

3=0 j=o j=0 

A FOURTH-POWER FORMULA 

H-79 Proposed by J . A . H. Hunter, Toronto, Ontar io , Canada . 

Show 

F 4 + F 4 + F 4 = 2f2F2 + f - l ) n l 
n+1 n n-i L n J 
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Solut ion by M . N . S. Swamy, Nova Scotia Technical Co l lege , Ha l i f ax , Canada. 

F r o m the well-known identity^ 

we have, 

2 ^ + (-l)nJ 

Hence, 

F F _,_. - F 2 = (-I)1' n - l n+i n 

F ,F ^ + F 2 
n - i n+i n 

F 4 + F 4 + 2F 2 F 2 + 4 F 2 F ,F ^ n n n - i n+l n n - l n+i 

F 4 + F 2 ( F 2 + 4F F ) + 2F 2 F 2 

n nv n n - i n+i n - l n+i 

= F 4 4 + F2 r 
n n[_ 

(F. n+i 
F J 2 + 4F F ^ n - l n - l n+l + 2F2 F 2 

n - l n+i 

= F 4 + (F ^ - F J 2 ( F _,_ + F )2 + 2F 2 F 2 
n x n+l n - l v n+i n - l n - l n n+l 

F 4 + (F2 - F 2 )2 + 2F 2 F 2 
n l n+l n - i ; n - l n+l 

F 4 + F 4 + F 4
 4 n n+l n - l 

F 4 + F 4 + F 4 = 2 f 2 F 2 + ( - l ) n 
n+l n n - i ! 

n 

Also solved by Thomas Dence, F. D, Parker, and L. C a r l i t z . 

A PLEASANT SURPRISE 

H-80 Proposed by J . A* H . Hunter, Toronto, Canada, and Max Rumney, London, 
England (corrected) . 

Show 

r=o r=o 
2r+5 
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Solution by L. Carlitz, Duke University 

This Is correct for n = 09 so we assume that n > 0e Since 

F = 4-TTT- > « = Ki + V5), /s =Jki -V5 > , "n a - p 

we have 

n 

r=o ' r=o 
E(:)n«-E(;)[«,rM-'«-i>r+H 
^ r=0 

aHa2 + l ) n + 13*0* + l ) n . 

On the other hand 

n-l n-i 

£(VK«^£(V)<«!r+,-^+i> 
r=o r=o 

= a*(a2 + 1 ) n " 1 - && + 1 ) n ~ 1 

or - j8 

Thus it suffices to show that 

aHa2 + if"1 + £4(02 + i)11-1 = (a - £) [> V + i)11"1 „ £5^2 + 1 } n- i ] 

The right side is equal to 

aHa2 + l ) n " \ + £6(/32 + l)11^1 + aHa2 + I)11"1 + jS'flS* + I)11"1 

= <*%2 + I)11 + iS4^2 + I)11 . 

Remark. More generally we have 
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n-i 
443 

Z L j ( r ) Fkr+2k " F k Z - / \ r j F2kr-H>k 
r=o r=o 

for k odd and n > 0. 

Also solved b y M . N . S* Swamy, F. D..Parker7 and Douglas Lsnd ugl 
• • • • • 

A NOTE OF JOY 

We have received with great pleasure the announcement of the forth-
coming Journal of Recreational Mathematics under the editorship of Joseph S. 
Madachy6 Volume 1, Number 1 Is to appear in January^ 1968. The journal 
"will deal with the lighter side of mathematics^ that side devoted to the enjoy-
ment of mathematics; it will depart radically from textbook problems and dis-
cussions and will pre sent original^ thought -provoking, lucid and exciting articles 
which will appeal to both students and teachers in the field of mathematics. n 

The journal will feature authoritative articles concerning number theorys geo-
metric constructions, dissectionSs paper foldings magic squares* and other 
number phenomena. There will be problems and puzzless mathematical bio-
graphies and histories. Subscriptions for the Journal of Recreational Mathe-
matics are handled by Greenwood Periodicals^ Inc. , 211 East 43rd St., New 
York5 N. Y„ 10017. We wish this valuable and Important journal all possible 
success. B , W E , • • • • • 


