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H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia.

Prove

n m
R, = XX AR

m=0 k=0

where Si‘s) and Si.s) are Stirling numbers of the first and second kinds, re-

spectively, and Fn is the nth Fibonaceci number,

H-124 Proposed by J. A. H. Hunter, Toronto, Canada

Prove the following identity:

2 2 e oT2 =
Fm+an+n Fnlm FmF?(m“Llfl)

where Fn and Ln denote the nﬂ[1 Fibonacei and Lucas numbers, respectively,

435



436 ADVANCED PROBLEMS [Dec.

H-125 Proposed by Stanley Rabinowitz, Far Rockaway, New York

Define a sequence ofpositive integers to be left-normal ifgiven any string
of digits, there existsa member of the given sequence beginning with this string
of digits, and define the sequence to be right-normal if there exists a member
of the sequence ending with this string of digits.

Show that the sequences whose nth terms are given by the following are

left-normal but not right-normal.,

a) P(n), where P(x) is a polynomial function with integral coefficients,
b) fn’ where Prl is the nth prime.

c) n!

d) Fn, where Fn is the nth Fibonacei number,

SOLUTIONS
EUREKA!

H-59 Proposed by D. W. Robinson, Brigham Young University, Provo, Utah.

Show that if m > 2, then the period of the Fibonacei sequence 0,1, 2, 3,
R Fn’ +++» reduced modulo m is twice the least positive integer, n, such
that

— 0
Fn+1 = (-1) Fn-1 (mod m)

Solution by James E. Desmond, Tallahassee, Florida.

Let s be theperiod of the Fibonacei sequence modulo m, Then by defin-

intion, s is the least positive integer such that
(1) F = 1 (mod m) and Fs = 0 (mod m),

S-1

By the well-known formula
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_ 2 o= (-1°
Fs+1Fs—1 Fs 1)

We find that 1= (—1)S (mod m) which implies, since m > 2, that s =2t for
some positive integer t, Itis easily verified that

_ t _ t+
(2) Fat-1 = Flg—g + (-1)7 = FgyLg + (-1)7 .
Since s = 2t we have by (1) and (2) that
3) FiLy; = 0 (mod m) if t is even, and

4) Fy_4Lg 0 (mod m) if t is odd.

i}

It is well known that

(5) th = FtLt 3 and

(6) (Lg-1s L) = (Fg-gp F) = 1.

Thus by (1), (3), (4), (5), and (6) we have

Ft 0 (mod m) if t is even, and

Lt 0 (mod m) if t is odd, i.e.,

+
Fpr + (-1 "Fey = 0 (mod m).

1]

Now, let n be the least positive integer such that Fn a7t (-1)n+1Fm_1 =0
(mod m) and we obtain n <t We also find that Fn = 0 (mod m) if n is
even, and Ln =0 (mod m) if n is odd, Thus by (2) we have, Fy-4 =1
(mod m) and by (5), Fy, = 0 (mod m). Since s is the period modulo m, it

follows by definition that 2t = s < 2n, Hence n = t.

RESTRICTED UNFRIENDLY SUBSETS
H-75 Proposed by Douglas Lind, University of Virgiﬁia, Charlottesville, Virginia.
Show that the number of distinct integers with one element n, all other

elements less than n and not less than k, and such that no two consecutive
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integers appear in the set is Fn—k+1 .

Solution by J. L. Brown, Jr., Ordnance Research Laboratory, State College, Pa.

Since each admissible set of integers must contain n, any given admis-
sible set is uniquely determined by specifying which of the remaining n -k - 1
integers (k, k+1, k+2,--+,n - 2) are included in the set. (Note that the
integer n - 1 cannot be included since n is in each set and consecutive inte-
gers are not permitted.) For each set, this information canbe given concisely

by a sequence of n - k - 1 binary digits, using a 1 in the mth

place (m =
1,2,++-,n -k - 1) if the integer k+ m - 1 is included in the set and 0 in
the mth place otherwise,

If we require additionally that the terms of each such binary sequence
(Qq,09,° 20 g 1) satisfy o, %44 =0 for i = 1,2,-++,n -k - 2, thenthis

requirement is equivalent to the condition that no two consecutive integers

" appear in the corresponding set. But the number of distinct binary sequences
of length n - k - 1 satisfying . =0 for i 21 is known to be F(n-k—1)+2

= Fn-k+1 as required. [See The Fibonacci Quarterly, Vol. 2, No. 3, pp. 166-

167 for a proof using Zeckendorf's Theorem. ]

FIBONOMIAL COEFFICIENT GENERATORS

H-78 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

(i) Show

where (1:11) are the binomial coefficients,

(ii) Show

xS [r]

m=0
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3
(1 - 2x - 2% + %) — L2
1y

x3 _ z:[m] S
9
(1 - 3x - 6x% + 3x3 + xt) — 3

where [ﬁl:l are the Fibonomial coefficients as in H-63, April 1965, Fibonacci
Quarterly and H-72 of Dec, 1965, Fibonacci Quarterly,

The generalization is: Let

k
fx) = :; (_1)h(h+1)/2[ﬁ] &
=0

then show

[eo]

% = Z[kn_ll:‘xm , & >1).

m=0

Solution by L. Carlitz, Duke University.

(i) This is a special case of the binomial theorem,

(ii) The general resultscan be viewed as the g-analog of (i), namely

k-1 .
ma-dy =3 (<1

J
j=0 j-o

where

{k+?'1}=<1-¥3a—$“5-~<1ﬂfﬂ*

)
) 1-aL-q) e (1-0)
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We shall also need
k-1 k
j SRR N[ VD S
0 a-do = ¥ ka0

=0 j=0

Now take q = B/a, @ =31+V5), B=H1-V5). Then

{k}__éa—j(k—j) o R O TRy [k]
j FIFZ' . FJ ] *

(Compare "Generating Functions for Powers of Certain Sequences of Numbers,
Duke Mathematical Journal, Vol. 29 (1962), pp. 521-538, particularlyp. 530,)

Since

-yl ( B>'21‘j(j—1)a-j(k-j) — D e IO D)
a

I AU P

we get, after replacing x by ak-ix, the identity

k-1 -1

; (_1)%j(j+1)[§<]xj iﬂ [k+3 - 1] o = ]zo-::[k +j - 1]
= = =

A FOURTH-POWER FORMULA

H-79 Proposed by J. A. H. Hunter, Toronto, Ontario, Canada.

Show

2
o 4 B, - 7]
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Solution by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada.

From the well-known identity,

_F2 o= (P
Fn—an-H Fn 1)

we have,

|
[
g

2 n]? _ 2]
2[2r + 1] pFass * 2]

- 4 4 2 2 2
Fn * Fn F ZFn—anﬂ N 4FnFn-iFnH

= Fi + FA(F2 +4F F )+ 2F F? .

= Fp o+ F; [(Fn+1 - Fn—1)2 * 4Fn—1Fn+1] * 2F12n-1F121+1
= Fp ot Fpyy - Fp SPE *Fy )P 2R FR

- F;ll " (F?1+1 - F%—1)2 * ZF;—iFiﬂ

- E e r R

Hence,

4 4t o4 4
Fn+1 Fn Fn—

.= Z[ZF; + (-1) ]

Also solved by Thomas Dence, F. D. Parker, and L. Carlitz.

A PLEASANT SURPRISE

H-80 Proposed by J. A. H. Hunter, Toronto, Canada, and Max Rumney, London,
England (corrected).

Show
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Solution by L. Carlitz, Duke University

This is correct for n = 0, so we assume that n > 0. Since

n n
L - 1 11 N\
P =g @ =41 +VE), =11 V5),
we have
n n
n 2 - n 2r+d _ o )T 214
52 (r) F:r+2 Z(r)[a 2(-1)" + 6 ]
=0 =0
= ot + )T+ gt + DT
On the other hand
n-1 n-1i
n-1 1 n-1
Z( r ) Forss =53 E ( r )(azr+5_’32r+5)
=0 =0

_ ofat+ )™ o pier 4 )™

@ -p

Thus it suffices to show that
aha? + )P4 pter - )M = @ - gt + P - sz + )R
The right side is egual to

a2 + 1P+ pigz + T+ abat + DT prg? 4 1)

= o + DT+ pe + D™

Remark., More generally we have
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n n-1
n 2 _ n-1

Z(r) Flpok = Fk§ :( r ) Fokr+sk

r=0 =0

for k odd and n > 0.

Also solved by M. N. S. Swamy, F. D. Parker, and Douglas Lind.

L3R 28 28 28 4

A NOTE OF JOY

We have received with great pleasure the announcement of the forth-

coming Journal of Recreational Mathematics under the editorship of Joseph S.

Madachy. Volume 1, Number 1 is to appear in January, 1968, The journal
"will deal with the lighter side of mathematics, that side devoted to the enjoy-
ment of mathematics; it will depart radically from textbook problems and dis-
cussions and will presentoriginal, thought-provoking, lucid and exciting articles
which will appeal to both students and teachers in the field of mathematics, "
The journal will feature authoritative articles concerning number theory, geo-
metric constructions, dissections, paper folding, magic squares, and other
number phenomena, There will be problems and puzzles, mathematical bio-

graphies and histories, Subscriptions for the Journal of Recreational Mathe-

matics are handled by Greenwood Periodicals, Inc,, 211 East 43rd St,, New
York, N, Y. 10017, We wish this valuable and important journal all possible

success, H.W.E, *ok ok ok K



