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H-126 Proposed by L. Carl i tz, Duke University. 

Let F and L denote the n Fibonacci and Lucas numbers, respec-n n ^ 
tively. Sum the series 
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H-127 Proposed by M . N . S . Swamy, Nova Scotia Technical College, Halifax, 
Canada. 

The Fibonacci polynomials are defined by 

f .(x) = x . f (x) + f (x) (n A 2) 
n+r ' nv ; n - r ' 

fji(x) = 1 and f2(x) = x 9 

If z = f (x) • f (y), then show that 

(i) z satisfies the recurrence relation 

z , - x y * z , - (x2 + y2 + 2)z , - xya z . + z = 0 * n+4 J n+3 v J ' n+2 J n+i n 

(ii) (x + y)2 ^ z r = ( z n ^ - zn_t) - (xy - l ) (zn + 1 - zn) 

H-128 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Let F and L denote the Fibonacci and Lucas numbers, respectively, n n 
Show that 

F n = 22 n + 3 - 23 n + 3 (mod 11) , 

L = 22n + 23n (mod 11) . 
n 

Generalize. 

H-129 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define the Fibonacci polynomials by fj(x) = 1, 

fi(x) = 1, f2(x) = x9 fn^(x) = xfn+1(x) + y x ) , n > 0 

Solve the equation 
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(x2 + 4)f2 (x) •= 4k(- l ) n"1 

in terms of radicals, where k is a constant, 

SOLUTIONS 

GREATEST POWER OF TWO IN N 

H-81 Proposed by Vassili Da lev, Sea Cliff, New York. 

Find the n term of the sequence 

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, • • • 

Solution by J . L. Brown, J r . , Ordnance Research Laboratory, State Co l lege , Pa. 

Let u denote the n term of the sequence for n > 1. Then for n 
> 1, each integer n has a unique representation in the form 

n = 2k<n) . r(n) , 

where k(n) is a non-negative integer and r(n) is an odd integer >1. The 
given sequence is formed by the rule u = r(n). 

Also solved by Thomas Dence, L. C a r l i t z , and C . B. A . Peck. 

LEHMERfS FAMOUS PROBLEM GENERALIZED 

H-82 Proposed by V . E. Hoggatt , J r . , San Jose State Co l l ege , San Jose, C a l i f . 

If f0(x) = 0 and fi(x) = 1, fn+2(x) = xfn+1(x) + y x ) , then show 

n=i v ' 

Solution by M . N . S . Swamy, Nova Scotia Technical Co l lege , Ha l i f ax , Canada. 
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Let tan #n = l / f (x). Then 

f2n+2(x) " f2n(x) _ * W i ( x ) 
tan (02n - 0mn) = i + f2n(x)f2n^(x) = 1 + f2 n(x)W2(x) 

It may be easily established by induction that, 

fn-i« Wx> - *n<x> = ™n 

Hence, 

xf2n+i(x) x 
tan (02n - #2n+2) ~ ~ ' 

^n+1(x) f2n+i(x) 

Or, 

tan_1[l/f2n(x)] - tan_1[l/f2n-H,(x)] = tan-1 [x/f2n+i(x)] 

Hence, 

i 
M) = tan_1{^-( - *»' ) w^ci" 

Now f2(x) = x, Also, as m«*-oof tan" (l/f2m+2(x))-^0o Hence, 

00 

" 1
r - 2 _ = tan"1 i f2n+1(x) x X^tan" 1 „ x ,.., •= t a n 

JL.T-

Note: Since f (1) = F , the n Fibonacci number, we get the interesting 
result that, 
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oo 
-i IT X "^ -i 1 

tan l = T = > tan = 
4 Z - ^ F2n+1 

l 

This i s Lehmer !s famous result. 

Also solved by Joseph D. E. Konhauser. 

ANOTHER CUTIE 

H-83 Proposed by Mrs. Will iam Squire, Morganrown, West Virginia. 

Show 

LT-J 

X>"(?:i) m+i-2t _ 

where [x] is the greatest integer function. 

Solution by M . N . S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

We know that the Chebyshev polynomial S (x) is given by 

Ln/23 
(1) 

i=.n V ' 

Also, S (x) satisfies the difference equation 

S (x) = xS (x) - S ! (x) , nv ' n - r ; n-2v ' 

with 

S0 — 1, S| - x 
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S (x) 
IT ; v5"^~ 

, n+i 
»x + Vx2 - 4f I x -V : :2 - 4 

\ n+ ln 

Or, 

w*K-*~> 
+ V 5 \ n + 1 (3 ^ X n + 1 

^ f 
= A j/i^vsy^2 __ /i-vsy^ = F. 2n+2 

Hence, F 2 n = S Q - ^ S ) . Therefore, from (1) we get 

: 2 m 

[(m-i)/2] 

3=0 

Changing j to (t - 1) we have, 

[(m+i)/2] 

E ^ - ( w ) 3 m+i-2t = F 2m 
t F i 

ALPHA AND BETA, AGAIN! 

H-85 Proposed by H. W. Gould/ West Virginia University, Morgantown, W. Va. 

Let 

D = f x n ~ f f x1 1]* n n L n Jr 

where 
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with 

i _,_ = f + f n+i n n - i 

f0 = i± = 1, x = (1 + VS)/2, 

and f~zj = greatest integer £z (so that z - ["zl = fractional part of z). Prove 
(or disprove) the existence of the limits 

Lim D9„ = 0.27 ••• = A J2n 
n—•oo 

and Lim D2 n + 1 = 0.72 
n —•oo 

= B with A + B = 1 

Generalize to case of 

t V i = p^n + ^ n - i * 

where p and q are real and |j.0 and \xt are given. 

Solution by L. Carlitz, Duke University. 
Put 

so that 

= J(l+V5), y = | ( l - \ ^ j , 

n+i n+i 
f = x - y 
n 

x - y 

2n+i n n+i 
9 D = 5 ULJL-

n x - y 

2n+i n n+i x - x y 
x - y 

Then 

4n+i 
D - x - y 
D2n " x - y 

4n+i 

x - y 

4n+l 4n+i o M 

£ zl = F4n + 1 zJ = F4n + 2L^2f 
x - y 4X1 x - y 41i 

n+2 

y2 + l 
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Since - 1 < y < 0 i t follows that 

57 

0 < y2 . y4n-H> 

y 2 - i 
< 1 (n > 0) 

Thus 

Therefore 

lim _._ _ 

x4 n + 1 - y 
x - y 

y2 = 

- F D - y2 - y4n+2 

y2 + i 

1 _ 2 5 - V5 
n = oo '2n 2 + 1 x2 + 1 5 + V 5 10 V 5 \ 2 

Simi lar ly 

D. 2n+i 
x431*3 + y _ [ ^ + y' 

~ x - y L x ~ y 

•x4n+3 x 4 n + 3 + y = „ , y 4 1 1 ^ + y = ^ f _ T + r 
x - y •4 n +2 x - y 

F4n+2 
y2 + i 

Since 

V2 + y 4 n + 4 

0 < z ~ — * < 1 , 
y2 + i 

we have 

L x " y . 
iT2 4- Tr4ll+4 y* 4- y^ 

- F^+2 s D2n+i ~ 1 ~ 
y2 + l 

^ _ 5 + V 5 _ _JL.-. / 1 +V5 > 
H m D 2 n + 1 = 1 - - E — -

1 1 = 0 0 y2 + l x2 + l 10 V 5 2 

• * • * • 


