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1. CANONICAL PRODUCTS AND CANONICAL REPRESENTATIVES 

Let Z denote the integers and M2(Z) 

M2(Z) = U J M : a, b, c, d E Z , 

the set of 2 X 2 integral matrices. The matrices of M2(Z) which have in-
verses in M2(Z) are denoted by GL(25 Z), ie e0 , 

GL(2SZ) = | x G M 2 ( Z ) : det x = ±1} . 

We shall develop an algorithm which uses various properties of the Fibonacci 
numbers for expressing any element of GL(2S Z) as a product of powers of the 
matrices 

A = {11) - B - ( i j ) 

This of course implies that A and B generate GL(2, Z), a result which has 
been noted elsewhere [3]9 The algorithm forms part of the author1 s B, A. 
thesis written under the direction of B. Hunt at Reed College in 1957. 

1.1 Definition; A "canonical product" is any product of the form 

U = Aan B^ Aan"i B ^ " 1 8 ' ' A3"2 Bb2 Aa* Bb l = ( a J J. , 

where n ^ i and a. > o, b. ^ 0 where we assume strict Inequality except 
possibly at i = n and i = 1 respectively,, 

We note that 

3 
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An / 1 n \ , _>n / n + i F n \ 

where F is the n Fibonacci number of the following sequence: 

n: 0 1 2 3 4 5 6 7 : 8 9 10 11 12 13 14 15 16 17 18 
F : 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 n 

1.2 Theorem. If 

»- ( :5 )"( , 1 ; ) 
is any canonical product then a ^ c ^ 0, b ^ d > 0. 

Proof. The theorem is true for A and B the products with one factor. 
Suppose the theorem true for any product 

- ( : * ) 

of k factors. Then 

™ - ( i ; X . " d ) - ( , : ° - b ; d ) - : : 

c > c > 0 
d > d > 0 

hence the throrem holds for any product of k + 1 factors and hence, by induc-
tion, for any U. 
1.3 Corollary: Not both c and d are zero and 

i) a => c > 0 unless U = ( * ^ j " ^ ' n ~ ° 

ii) b > d > 0 unless U = ( n * 1 * ) = B A ^ B , n > 0 
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iii) c t d unless U = ( n ^ 1 " J = An - 1B2 , n == 1 
or 

U = (l n +
1

1 j = A ^ B A , n ^ : 

iv) a ^ b unless U = A or B . 
v) c > 0 unless U = t * * J = An 

vi) d < 0 unless U = / * jM = An ^ B . 

Proof. These are immediate consequences of the theorem and the fact 
that det U = ad - be = ±1. 

1,4 Corollary; If 

°- ( :5) ' ( ss ) 
then 

i) a - b > 0 implies c - d > 0 
ii) a - b < 0 implies c - d ^ 0 . 
Proof, i) a > b, c ^ d implies 

ad - be > bd - be > be - be = 0 

Hence ad - be ^ 2, which is impossible. 
ii) a < h, c > d implies b > - a ^ c > d ^ 0 and so b ^ 2, Hence 

ad - be < bd - be = b(d - c) — 2(-l) = -2 which is impossible. 

1.5 Theorem. Let 

u =fa h, 
l e d 

Hi!) 
be a canonical product. Then 
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1. a - b = 0 implies U = A, B. 
2. a - b < 0 implies U ends in A and a - b ^ c ~ d ^ 0 
3. a - b > 0 implies U ends in B and a - b — c - d ^ O . 

Proof. 1 follows from Corollary 1.3. 
2 and 3. The theorem is immediately verified for products of two factors 

*'-(iJ). = , - ( ; 0 ' A B - ( J . 1 ) - B * - 0 0 -
Suppose the theorem holds for products with k or fewer factors and 

» - ( S 5 ) 
is a product with k factors where k ^ 2. Then 

» » - ( : $ X i O - ( c * 5 c) 
and 

( a + b ) - a = b ^ l > 0 and b ^ (c + d) - c = d ^ 0 . 

Note b = 0 implies d = 0 which contradicts det U = ±1. Likewises 

«* • (: s)(J 1) - ( : : : s ) 
hence 

a - (a + b) = -b < 0 and c - (c + d) = -d and -b < -d < 0. 

Thus the theorem holds for products of k + 1 factors and hence for all canoni-
cal products by induction. 

Theorem 1.2 says that if 
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is a canonical product then a ^ c ^ 0, and b ^ d ^ 0 while Theorem 1.5 
allows one to decide if the canonical product ends in an A or Ba Not every 
unimodular matrixsatisfi.es the conditions of Theorem 1.2 but the following 
theorem characterizes the situation. 

1.6 Theorem. (See [2").) Any matrix 

R =( t u) E GL(2,Z) 

different from I, A, B can, by suitable multiplications by powers of A and 
B, be brought to the form 

D - ( . '5 ) • 
where (a, bs c9 d) is some permutation of (|r|, \s\9 It I, |u|) and a ^ c ^ 0# 

b — d ^ 0. U is called a canonical representative of R. 
Proof. From the condition ru - st = ±1 we can conclude that no three 

of the quantities r9 s9 t, u can be negative and the remaining one positive or 
three of them positive and one negative. There are therefore three remain-
ing cases: 

1. r , s, t, u are all non-negative, 
2. r , s, t, u are all non-positive, 
3. Two of r, s$ t, u are negative, two are non-negative. 

In case 2 we note 

{-i-t)(i:)- U'i 
In case 3 we note 
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(j..:)fr : ) ( i ! ) - ( ? - 0 

While 

(' 0(J°H«0-
.The multipliers can be expressed as follows: 

XB ^ B A " 1 ( ' J ) - A - B . ( J l ) - ^ 

( i o ) ( i o) = \ o ij ' 

(; i)* • (-; -i) • 

Thus we have that 

/ r s \ / | r | |s |\ 

H t u jN = (,t1 J . 
where M and N are suitable products of powers of A and B. 
- |s | | t | = lru| - |st| = ±1 since 1 = |ru - st|=^ ||ru - |st|| and 
not possible Also operating with 

( : : ) 
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we can bring any element, in particular the largest, to the upper left position,, 
If 

is in this form, i. e . , a ^ b, cd ^ 0 then we may assume that b > d. For 
b < d implies ad - be ^ ad - cd = (a - c)d ^ 0 unless a = c* If a = c 
then 

( l o ) ( c d ) = ( a b ) has the property J J £ J J • 

Every unimodular matrix has 2 canonical representatives depending on whether 
a maximal element is brought to the upper left or upper right-hand corner. 
We now prove the converse of Theorem 1,2. 

1.7 Theorem. Every canonical representative of a unimodular 2 x 2 matrix 
is a canonical product. 

Proof. Let 

" - (c8 J ) 

be a canonical representative, i. e . , a ^ c ^ 0, b ^ d ^ 0. If the largest 
element of U = 1 then U = A, B and the theorem holds. Assume the theo-
rem is true for max(a,b) ^ r, where r ^ 1. Then there are two possibili-
ties for max(a,b) = r + 1: 

Case 1. 

Case 2. 

z = / a r + 1 \ 
\ c w / 
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We now analyze Case 1. We have that 0 ^ c, b, d < r + 1 otherwise r + 1 ; 
2 divides det Y = ±1. 

YB"1 / r + 1 b \ / 0 l \ / b r + l - b \ 
\ c d / \ l - 1 / ^ d c - d / 

If d = 0 then b = c = 1 and 

™-'-(s : ) - 0 0 - A ' 
Hence Y = A B is a canonical product. If d ^ 0 then c - d ^ 0 for other-
wise 

J det (YB 1] 

We need only establish that r + l - b > c - d to show that YB~ is a can-
onical representative. If 

det Y = (r + l)d - be = 1 

then 

(r + l)d - bd = 1 + be - bd 

and so 

(r + 1) - b = -1 + ~ ( c - d ) ^ c - d 

since b > d. If 

det Y = (r + l)d - be = -1 

then b, c > d since b, c < r + 1 . 
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Hence 

(r + l ) _ b = § ( c - d ) - ± = (c - d) +^jj - 1 j(c - d) - i 

= (c - d) + i [(b - d)(c - d) - l ] ^ c - d. 

Thus YB~" is a canonical product by induction hypothesis. This implies that 
Y must also be a canonical product* 

Case 2 is analyzed by an analogous treatment of ZA~ . The theorem 
then follows by induction 

2. THE ALGORITHM 

Let U E GL(2S Z). Theorem 1.6 describes how to obtain a canonical 
representative U for XL Theorem 1.7 asserts that U is a canonical product 
and Theorem 1.5 establishes whether U ends in an A or B» The following 
theorems provide a quantitative counterpart for Theorem 1.5. 

2.1 Theorem. If 

" - ( : a ) 

is a canonical product and a - b < 0 then U = UjA where 

and Ui ends in B* 
Proof. If a = 1 we consult Corollary 1.3. If a f 1 we note: 

1. b £ na since b = na implies aldet U = ±1 and a = 1, 
2. a ^ c since a = c implies a = 1. Then 

*Tal is the greatest integer less than or equal to a 
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T T A -n / a b \ / 1 - n \ / a - n a + b \ 
U A " ^ c d / ^ 1 / " \ c - n c + d / " Ui 

[Feb. 

Since 

N = 

a - (-na + b) > 0 . 

Hence if Ui i s a canonical product i t ends i n a B, If - nc + d < 0 then, r e -
cal l ing that a ^ 2, 

det Ui = a(-nc + d) - c ( -na + b) < -2 - c 

which i s imposs ib le . Hence -nc + d ^ 0. F u r t h e r 

r = - n c + d ^ - n a + b 

s ince 

-na + b ^ 0 

impl ies 

det Uj = a r - c ( -na + b) ^ a r = (a - l ) ( r - 1) 

= a r - a r + (a'+ r) - 1 ^ 2 + 1 - 1 = 2 

which i s imposs ib le . 

2.2 Lemma. 

1. 
n ^ a ^ n + 2 ^ V 5 + 1 . . . . _ _ < „- < < .— impl i e s b > F F . b F ^ 

n - i n+i 
n+i 

if n i s even, 

F F 
0 V 5 + 1 n+2 a n . . . , • „ 
2. — g < ^ < *- < ^ impl ies b > F 

n+1 n - i 
n+i 
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if n is odd. 
Proof. We prove 1 using continued fraction notation [ l , Chapter XJ. In 

the following the initial block of ones in the continued fraction symbols will be 
of length n - 1. Also we note 

[X0, Xlf • • • , XJJ, 1 ] = [X0 J Xlf • • • , Xn + l ] 

F 
Y±- = [1.1. •••.!] 

n-l 

is a convergent to 

V 5 + 1 f l 1 -, s = [ 1 , 1, - . J 

If we express 

jj = [a0, als • • •, am] 

as a continued fraction then by the continued fraction algorithm [ l , p. 140] 

TT1 TT 

a r-, -, •* - i - n _ a ^ n+2 
^ = [ 1 , 1, • • • . 1, an - 1 . a,,, a m ] since j r — < ^ F -

'n - i n+i 

i. e.., m ^ n - 1 and a0 = aA = • • • = an_2 

Letting 

[an-i' V " ' V] = an-i = I 

where (r, s) = 1 we have 
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A- = [l , 1, °00, l j < 1, !. '•••, 1, f U [ l , l , - - - , 1 , 2 ] 

Hence 

r F + sF • - F + F 2F + F F , 
2: = n n-i = s n n-i < n n-i __ n+2 
b rF + sF r _, , -, 2F + F • F ^ n-i n-2 - F + F n-i n-2 n+l s n-i n-2 

By the continued fraction algorithm 

r 
n-i s 

Now r / s = 1 implies 

£ = F n + 1 >V5 + 1 
b F 2 

n 

Hence r / s =* 1 and r ^ 2. Likewise, r = 2 implies s = 1 and 

a _ n+2 
& F a., 

n+i 

Hence r > 2. If 

(rF + sF „, r F 4 + sF ) = 1 n n-i n-i n-2 

then 

But 

b > rF "+ sF > F ^ = 2F + F 
n-i n-2 n+i n-i n-2 

d (rF + sF ), d (rF + sF ) T n n - i " l\ n-i n-2 
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impl i e s 

d | j r ( F - F ) + s(F 4 - F )} = r F + s F H n n - i n - i n-2 ' n-2 n-

Hence 

d ( rF i + Fo 

Also 

d f , d (rF, + sF . ), 1 ^ k ^ n 

impl ies d sF , j and hence ^ I k - l 

d F, , 1 ^ k ^ n , I k - r 

s ince (r, s) = 1, Thus d = 1, s ince the F, a r e re la t ive ly p r i m e , a fact 

which can be es tabl i shed in the s a m e r e c u r s i v e manner , 

The s a m e type of a rgument i s used in proving 2. 

2.3 Theo rem. If 

* = ( « * ) • a - b > 0 , b > d > 0 

then U = UiB n , whe re n i s de te rmined by locating a / b with r e s p e c t to the 

sequence of points 

F 2 F 4 F 6 V 5 + 1 F T F 5 F 3 

F i F 3 F 5 2 F 6 F 4 F 2 

and Ui i s a canonical product ending in A o r Uj = A,B» More p r e c i s e l y 9 

F F 
(1) -^—- < ^ < ^ — if n i s even ; 

n - i n+i 
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F F 
(2) -p - b F ' l f n 1S o d d ; 

n+l n-i 

(3) 2 = j r < ^ ,when n = 1 

Finally, if b = d = 1 or d = 0 we consult Corollary -1.3. 
Proof. We prove 1 and note that the proofs to 2 and 3 are analogous. 
Suppose 

F F 
n_ ^ a < n+2 V5 + 1 

F ~ b ~" F ' 2 
n-i n+l 

Then 

( a F , - b F -aF + b F ^ \ 

n-i n n n+i I 
c F - d F -cF + d F _,_ I 

n-i n n n+l / 
We first note that 

(aF ; - bF ) - (-aF + bF ,,) = aF ,, - bF ^0 <; 0 n-i n n n+i n+i n+2 

Hence, if we establish that Ui is a canonical product,then Ui ends in A or 
Ui = A2B. To show mat Ui is a canonical product we note that aF - bF 
> 0 and -aF + bF , > 0, since n n+i 

F F F 
n ^ a < n+2 < n+l 

F A b ~ F' F ' 
n-i n+i n 

This shows that the top row has positive entries. If we show 
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"n- i 
£ 
d 

"n+i 

(ii) n < a - c 
F " b - d n - i 

"n+i 

then the bot tom row i s posi t ive and the columns d e c r e a s e s ince the two 

equations 

(aF - b F ) - (cF - dF ) = (a - c)F - (b - d)F ^ 0 n - l n n - l n n - i n 

( -aF + b F ^ ) - ( -cF + d F _ ) = - ( a - c )F + (b - d)F ., ^ 0 n n+l n n+i n n+i 

a r e equivalent to (ii)0 We now note that 

a c 
b ~ d = ab - be 

bd bd 

for u s e in proving (i)5 

a a - c 
b " b - d 

ab - ad - ab + be 
"b(b - d) 

1 
b(b - d) 

for proving (ii)„ We conclude by proving (i) s ince (ii) i s s imi l a r . 

Since 

n - l 

a 
b 

n+2 
"n+l 

, b 2: F. n+l 

by L e m m a 2.2. If 

£ 
d n - l 

then 



18 FACTORIZATION O F 2 x 2 INTEGRAL MATRICES 

3 F n - i d F n - i 
A. 
b d ' n-1 

[Feb. 

d F 
n - i 

which i s imposs ib le . Hence 

"n-i 
£ 
d 

Likewise 

impl ies 

F 
£ > n+l 

dF dF 
n+l 

1 
bd 

c 
d ' 

a c 
- b s d -

> 

F ~ n 

d F + " n 

J? i? 
n+l > n+2 

F ~ F ^ n n+l 

1 
F F 

n n+l 

which i s imposs ib le s ince 

F F ^ 
n n+l 

Hence 

—*—» 
F 

n 
F 4 n-1 

a 
b 

£ < 
d "" 

t 

F 
n+2 

F 
n+l 

'"n+l 
F n 

V5 + 1 
2 

F 
n+l 
F n 

c 
d 
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3e EXAMPLE 

/ 2 0 6 1575 \ 
U \ 79 604 J 

i s a canonical product ending in A7, s ince a - b = 206 - 1575 

So tha t 
206 

79 
1575 

604 

1575 
206 = 7 

206 
79 

133 
51 = Ui 

Then, 

" l e b b 133 " l e ^ ' l e b " F* 

hence Ui ends in B4» We note that 

206 133 
k 79 51 

2 -3 
-3 5 ) - ( i ") 

ends in A3
e Since 

13 47 
5 18 

[s]-
)(i'D-(: 13 8 

5 3 = U3 

* ? a 13 J 5 

hence U3 ends in Bb „ 



FACTORIZATION OF 2 x 2 INTEGRAL MATRICES [Feb. 

ft sKi-0-0 0 = A 

There fo re 

U = AB5A3B4A7 . 

4. TABLE 

•S* = 'T = 2,0000000 
Jb o 1 T £ = § # = 1-6180338 

^ = I = 1.6666667 
r 4 o 

| 1 L = 9 | J = 1.6180328 
J? 15 blO 

4 1 = Ar = 1.6250000 
'13 

377 
233 1.6180258 

4 s = -5? = 1.6190476 
.b p < 5 l 

*J2 
F n 

144 
89 = 1.6179775 

| 1 L = | | = 1.6181818 
Fio 55 Zlfl 55 

34 = TH - = 1.6176471 

F i 3 = 233 
'12 144 = 1.6180556 Is 21 

13 = 1.6153846 

f j = ™ = L6180371 la 1.6000000 

! i l 1597 
r10 987 

= 1.6180344 I 4 = | = 1.5000000 

V 5 + 1 = 1.6180340 £2 = I = 1.0000000 
* 1 x 
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• • • • • 

EIRATJt 

P l e a s e make the following co r r ec t ions in " R e c u r r e n c e Relat ions for Sequences 
Like J F F }, " The Fibonacci Quar te r ly , Apri l , 1967, Vol. 5, No. 2, pp. 129-
136: 

1. Replace "nM by " F " in the f i r s t l ine of the th i rd pa rag raph on p0 129. 

2. Replace the equations of (7?) on page 132 by 

2X ± = X , Y + X Y ^ n+2 n+i n n n+i 
2Y _, = (r - s)2X X + Y ^ Y . n+2 n+l n n+l n 

3. Replace the MajM in the f i r s t l ine of p. 134 by Ma-jM . 

4. Replace the minus sign in the l ine preceding (15) on p. 134 by a plus . 

5. Delete the f i r s t "4ETT on the f i rs t l ine of page 136. 
• • * • • 

P l e a s e a l so c o r r e c t "A Shift Fo rmu la for R e c u r r e n c e Relat ions of Orde r m , f l 

The Fibonacci Quar te r ly , December 1967, Vol. 5, No. 5, pp. 461-4659 by r e -

placing the " p m
n in the sum on the l a s t l ine of p . 462 by n P m _ j " • 

• • • • -k 

P l e a s e make the following co r r ec t i on in 

?T The Fibonacci Quar te r ly , November , 1967, Vol. 5, No. 43 p . 370: 

In the fourth l ine f rom the bot tom, r ep l ace "difference of each pairM with 

"differences of the p a i r s . M 


