FACTORIZATION OF 2 X 2 INTEGRAL MATRICES WITH DETERMINANT +1
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1, CANONICAL PRODUCTS AND CANONICAL REPRESENTATIVES

Let Z denote the integers and M,(Z)
Myz) = (2P ) a b cdez
2 c d i ’ ] ’ H

the set of 2X 2 integral matrices, The matrices of M,(Z) which have in-
verses in My(Z) are denoted by GL(2, Z), i.e.,

GL(2,Z) = {x € My(Z): detx = 1}
We shall develop an algorithm which uses various properties of the Fibonacci

numbers for expressing any element of GL(2,Z) as a product of powers of the

matrices
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This of course implies that A and B generate GL(2,Z), a result which has
been noted elsewhere [3]. The algorithm forms part of the author's B, A.
thesis written under the direction of B. Hunt at Reed College in 1957,

1.1 Definition: A "canonical product" is any product of the form

U = A%n pPn p%n-1 gPn-1 ... A% pP2 A31 b1 - < a g ) ,
(]

where n = 1 and a, = 0, bi = (0 where we assume strict inequality except

possiblyat i = n and i = 1 respectively,

We note that
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F F
n _ 1ln n _ ntl "n
A—(01> and B—(F F'>’
n n-1

where Fn is the nth Fibonacci number of the following sequence:

n: 0123456 78 91011 12 13 14 15 16 17 18
Fn:O 11235 8 13 21 34 55 89 144 233 377 610 987 1597 2584

1.2 Theorem, If

oo (3e)(67)

is any canonical product then a=c= 0, b= d = 0.
Proof, The theorem is true for A and B the products with one factor,

Suppose the theorem true for any product

r-(2h)

of k factors., Then

(1 1\fa b\ _ [fat+tec Db+d atc=c=0
AT‘(O 1)(0 d)'( ¢ d )and b+d=d= 0.,
_ ({1 1\ab) _ [fa+c Db+d atc=Za=0
BT “(1 O)(c d>_< a b )and b+d=b=0.

hence the throrem holds for any product of k + 1 factors and hence, by induc-
tion, for any U, ;

1,3 Corollary: Notboth ¢ and d are zero and

i) a>c= 0 unless U=<i n;1)=BAn, n= 0

n+l 1

n-1 :
n 1)=BA B, n=0

iil) b>d= 0 unless U =(



1968] WITH DETERMINANT #1 5

(n+1 n) = ADig2 o
, D=

1l

iii) ¢ # d unless U 1 1

or

- {(n n=*+1}) _ ,n-1 =
U (1 1) A7 BA, n= 1

iv a #b unless U = A or B .

- - f1n) _ ,n
V) c 0 unless U (O 1) A

vi) d <0 unless U (rl1 ‘]5) = AN .

Proof, These are immediate consequences of the theorem and the fact
that det U = ad - bc = #1,

1,4 Corollary: If

then

i) a-b >0 implies c-d =0
ii) a-b <0 implies c-d =0,

Proof, i) a > b, ¢ =d implies
. ad - bec =bd - bc> be - bc = 0
Hence ad -bc = 2, * which is impossible,

ii) a <=b, ¢> d implies b>=a=c> d= 0 and so b= 2, Hence

ad -bc =bd -bc = b(d - ¢c) = 2(-1) = -2 which is impossible,

1,5 Theorem, Let

be a canonical product. Then
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1, a-b =0 implies U = A, B,

2. a-b =<0 implies U endsin A and a-b=c-d =0

3. a-b>0 implies U endsin B and a-b=c-d= 0.
Proof, 1 follows from Corollary 1.3,

2 and 3. The theorem is immediately verified for products of two factors

2 _ (12 s _[21 _ (21 _ (12
A <01,B 1 1) AB 1 o) and BA 11)

Suppose the theorem holds for products with k or fewer factors and

is a product with k factors where k = 2, Then
_f{ab)f11)_({a+tb a
UB_(C d)(l O) (c+d c)
and

(a+b)-a=b=1~ 0 and b=(+dy-c =d=0,

Note b = 0 implies d = 0 which contradicts det U = +1. Likewise,

_fabYf1 1) _ [a a+hb
UA_(C d)(o 1)—(0 c+d)

hence

a-(a+b) =-b<0 and c-(c+d) = -d and -b =-d = 0.

Thus the theorem holds for products of k + 1 factors and hence for all canoni-
cal products by induction.
Theorem 1.2 says that if



1968] WITH DETERMINANT #1 7
[ anb

is a canonical product then a=c= 0, and b= d= 0 while Theorem 1,5
allows one to decide if the canonical product ends in an A or B, Not every
unimodular matrix satisfies the conditions of Theorem 1.2 but the following

theorem characterizes the situation.

1.6 Theorem, (See [2}.) Any matrix

R =< f lsl)EGL(Z,Z)

different from I, A, B can, by suitable multiplications by powers of A and
B, be brought to the form
_fa b.
U= (c d) ’

where (a, b, ¢, d) is some permutation of (jr(, (S|, Itl, lu|) and a=c= 0,
b= d= 0. U is called a canonical representative of R,

Proof, From the condition ru - st = +1 we can conclude that no three
of the quantities r, s, t, u can be negative and the remaining one positive or
three of them positive and one negative, There are therefore three remain-
ing cases:

1. r, s, t, u are all non-negative,
2. r, s, t, u are all non-positive,
3., Twoof r, s, t, u are negative, two are non-negative.

In case 2 we note

In case 3 we note
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-1 0 r s)Y_{[ -r -s
0 1 t u t u
r s\(-1 0} _ [-r s
t u/\LO0 1 -t u
1 0 ffr s \f-1 O _ [-r s
0. -1 t u 0 1 t -u

While

The multipliers can be expressed as follows:

0 1) _ ,-t 0 -1} _ ,-1.-1 -1
(1 O)—AB, (1 O)—ABABA )

0 -1\(f0 1\ _ (-1 0
1 oJ\1 o) 0 1/°
and
0 -1\2 _ (-1 0
1 0 0 -1
Thus we have that
r s ey Isi
M ¢ u)N - (m )

where M and N are suitable products of powers of A and B. Note |r||u]

- |sllt] = Iru] - |st| = #1 since 1 = |ru - stl':'2 lru - |stj] and lrui= tstis

()

not possible. Also operating with



1968] WITH DETERMINANT =1 9

we can bring any element, in particular the largest, to the upper left position,
if

[ a b
U —<c d)# A,B

is in this form, i.e., a =Db, cd = 0 then we may assume that b = d. For
b <d implies ad-bc=ad-cd = (a-c)d=0 unless a = c. If a=c¢
then

0 1 b d
(1 0) (g d)=<§ b)hastheproperty

Every unimodular matrix has 2 canonical representatives depending on whether

vV v
v v

Q0

a maximal element is brought to the upper left or upper right-hand corner.

We now prove the converse of Theorem 1.2.

1.7 Theorem. Every canonical representative of a unimodular 2 x 2 matrix
is a canonical product.

Proof. Let

St

be a canonical representative, i.e., a=c=0, b=d= 0. If the largest
element of U = 1 then U = A,B and the theorem holds, Assume the theo-
rem is true for max(a,b) = r, where r = 1. Then there are two possibili-
ties for max(a,b) = r + 1:

Case 1.

Case 2.

7 =(a r+1)
c w
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We now analyze Case 1. We have that 0= ¢,b,d < r +1 otherwise r+1=
2 divides det Y = #1.

st _fr+1 bYf0 1) _{(b r+1-b
YB ‘( c d)(l -1)_(d c-d )

If d=0 then b=c¢c =1 and

-1 (b r\_({1 r\_ ,r
ot (30)- (6 5)-

Hence Y = A'B is a canonical product. If d # 0 then ¢ -d= 0 for other-

wise
ldet (YB—i)‘ =2 .

We need only establish that r+1-b =c - d to show that YB~! is a can-

onical representative. If
detY = (r+1)d-bc =1
then
(r +1)d-bd = 1+ bc - bd

and so

(r+1) -b = +g(c_—d)2 c-d

1
d
since b= d. If

det Y = (r+1)d-bec = -1

then b,c> d since b,c < r+ 1.
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Hence

-B(c—d)—(—ljl = (c—d)+<%—1)(0-d)—%

I

(r+1)-b

-d)+3[B-de-d-1]=c-d

Thus YB™! is a canonical product by induction hypothesis. This implies that
Y must also be a canonical product.
Case 2 is analyzed by an analogous treatment of 7ZA™!, The theorem

then follows by induction.

2. THE ALGORITHM

Let U € GL(2,%Z). Theorem 1.6 describes how to obtain a canonical
representative U for U. Theorem 1.7 asserts that U is a canonical product
and Theorem 1.5 establishes whether U ends inan A or B. The following

theorems provide a quantitative counterpart for Theorem 1.5.

2.1 Theorem. If

o-(2%)

is a canonical product and a-b <0 then U = UiAn where
N = [p_]
a

Proof. If a = 1 we consult Corollary 1.3, If a # 1 we note:

and Uy ends in B¥

1. b # na since b = na implies aldetU = 21 and a = 1,

2. a = ¢ since a = ¢ implies a = 1. Then

*[a] is the greatest integer less than or equal to «
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Since

Hence if U; is a canonical product it ends in a B.

FACTORIZATION OF 2 x 2 INTEGRAL MATRICES

-n _ [fa b 1 -n)_(a -na+b ) _ »
UaA _<c d)(o 1)_<c -nc+d)_U1'
N = l).

a

a-(na+b)>0.

calling that a = 2,

det U; = a(-nc+d) - c(-na+b)< -2-c¢

which is impossible. Hence -nc +d = 0. Further

since

implies

r=-nc +d = -na + b

r >-na+b =0

detU; = ar - c(-na+b)= ar=(a- 1)(r - 1)

=ar-ar+(a+r)-1=Z2+1-1 =

which is impossible.

2,2 Lemma,

1.

F
n

F

-l

Fn+z<\/§+1
2

a . . -
5 < 7 implies b Fn+1

n-1 n+i

if n is even,

implies b > Fn+1

2

[Feb,

If -nc+d < 0 then, re-
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if n is odd.
Proof, We prove 1 using continued fraction notation [1, Chapter X] In
the following the initial block of ones in the continued fraction symbols will be

of length n - 1, Also we note

(X0 %00 o0 X 17 = [0 530 00 +1]

F
n

7 =[1, 1,...,1]
n-1

is a convergent to

V5
= [1 1] .

If we express
% = [;ao, Ay °°°, am]
as a continued fraction then by the continued fraction algorithm [1, p. 140]

Fn+2

ol
L]

F
2 = [1, 1,5, 1,2 ,a, since —=—— <
9 H H] 3 9 3
n- “m] Pt n+

ol

ji.e., m=n-1 and a3 = a; =°°° = a9 =1,

Letting
- = r
(Bn-p B """ ay] = Ay s

where (r,s) = 1 we have
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Fn . . T Fn+2
7 =[1 1, 1] < [1, 1, «e0, 1, E]<[1’1"""1’2] =5
n-1 n+i
Hence
r
+ = + +
s _ rF +sF L s tF, o Y i Fo.
b an-i * SFn—z L F +F 2Fn—1 + Fn—z Fn+1
s n-i n-2
By the continued fraction algorithm
al =Lf=1 .
n-1 s
Now r/s = 1 implies
a _ Fnu_VE+1
b F 2 ©
n
Hence rv/s > 1 and v = 2, Likewise, r = 2 implies s = 1 and
b Fn+1
Hence r = 2, If
(an + an_l, an_1 + SFn—z) =1
then
b = an—i * SFn—z - Fn+1 = 2Fn—1 * n-2 °
But \
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implies
dl{r(Fn -F )*ts(®  -F )} =rF  +sF
Hence
d|(rF1 +Fy) = ¢ ,
Also

d

r, d(rFk+sF l1=k=n

k_i)s

implies d!st_ ‘ and hence

dFk—i’ 1=k=n,

since (r,s) = 1. Thus d = 1, since the Fk are relatively prime, a fact
which can be established in the same recursive manner,

The same type of argument is used in proving 2.

2.3 Theorem. If
U =<a b), a-b>0, b>d>0
c d

then U = UiBn, where n is determined by locating a/b with respect to the
sequence of points

< 600 € o € e < e

and U; is a canonical product ending in A or Uy = A;B. More precisely,

n Fn+2
(1) < T if n is even ;
n-i n+i

!
ol
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P a Fa
(2) ——SB'< —F——,ifnisodd;
n+i n-1
Fg a
(3) 2=-1TZ$TO-,whenn=1.

Finally, if b =d =1 or d = 0 we consult Corollary 1.3.
Proof. We prove 1 and note that the proofs to 2 and 3 are analogous,
Suppose

Fn+zv< V5 + 1

IA

e
ol
I

n-1 n+i

Then

F -F
_f[a b -n _[a b n n-1 n
Uy = (c d)B = (c d)(_l) <'--Fn FnH)

<a F .-b F -aF_+b F >
n-1 n n n+i
c Fn—i_d Fn —an+d Fn+1
We first note that

(aFn_1 - bFn) - (-aFn + bFn+1) = a.]i‘n_H - bFn+2 .

1A
=

Hence, if we establish that U; is a canonical product,then U; ends in A or

Uy = AyB. To show that U is a canonical product we note that aFn_ i bFn

=0 and -aF_+bF > (0, since
n n+i

This shows that the top row has positive entries. If we show
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F
@ . n__ % - Fn+1
n-1 . n
F F
(ii) n_ a-=c¢ = n+i
F b-d F
n-1 n

then the bottom row is positive and the columns decrease since the two

equations

(aFD_1 - bFn) - (an_1

(—aFn + bFn+1) - (—an + an+1) = ~{a - c)Fn + (b - d)Fn

are equivalent to (ii). We now note that

—an) = (a—c)Fn_l— (b—d)FI1

a c¢| _jab-be| _ 1
b~ dj| "~ bd bd
for use in proving (i),
a _a-cf_ ab - ad - ab + be| _
b b-d bo - d)

for proving (ii). We conclude by proving (i) since (ii) is similar,

Since

F F
n _ a_ _nh b
- 2
Fn—i b Fn+1
by Lemma 2.2, If

F

¢~ _n
d F

n-1

then

>

=

0

0

17
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i F
1 .1 . 1 _la_¢c L _cj._1
aFn_1 an_1 bd b d_ 'Fn— ] d an_1
which is impossible, Hence
F
n__c
F - d °
n-1
Likewise
¢ - Inn
d F
n
implies
an an 1 bd d b d Fn Fn Fn "

an FnFn “
which is impossible since
FnFln I
Hence
£ < _nit
d F )

Fra V5 + 1 Fon

C
Fn-i Fn+1 2 Fn d
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3. EXAMPLE
U = 206 1575
- 79 604
is a canonical product ending in A7, since a -b = 206 - 1575 <0 and

1575
Lzo_e; =7

So that
206 1575} (1 -7} _ (206 133} _ [
79 604/ V0o 1 79 51 1
Then,
F4 FG
e < .?‘. = .,2_9.?. = ~z e
T 1.5 5 133 1.55 <= 1.6 7

hence U; endsin B4 We note that

206 133)( 2 -3} _ (13 47
79 51/\-3 5 5 18

ends in A3, Since

hence U; ends in BF,
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(0 2)-(i 1)

Therefore
U = ABSASBYAT ,
4, TABLE
P o2 2,0000000 Fus _ 2584 _ 4 5180338
F, 1 Fy; 1597 :
Fs_ 5. 1.6666667 Fyg - 987 _ 1.6180328
T, 3 Fi; 610 .
T 13
=1 = =2 = 1,6250000 Fu o 307
s = Fe = 533 1.6180258
F 34
Fy _ 3% _ 16190476 P o 124 _
= 5 v =5 = 16179775
Fu - 8 _ 46181818 Fy _ 55 _
i = il Rl 1.6176471
-Eli:z—s—3=16180556 Ej__z_l:
it = T = 13 1.6153846
By - 810 _ 4 6180371 Fg _ 8 _
Fi =7 =5 1.6000000
Fir 1597 Fr 2 3 = 15000000
—:ETIH— "—9'§7 = 1-618034:4 F3 2 *
V5 + 1
= 1,6180340 Fp 1 _
5 ol 1.0000000



1968] WITH DETERMINANT +1 21

REFERENCES

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
Clarendon, Oxford, 1938,

2. Hunt Burrowes, ''Continued Fractions and Indefinite Forms, ' unpublished
article, Notice in Bull. Am, Math. Soc. 62 (1956), 553.

3. George K. White, "On Generators and Defining Relations for the Unimodular
Group M,," Amer. Math. Month, 71 (1964), 743-748,

ERRATA

Please make the fbllowing corrections in "Recurrence Relations for Sequences
Like {FFn}, '"" The Fibonacci Quarterly, April, 1967, Vol. 5, No. 2, pp. 129-
136:

1. Replace '"n'" by "F'" in the first line of the third paragraph on p. 129.
2. Replace the equations of (7') on page 132 by
2X =X Y +XY

n-+2 n+i “n n n+i
2 =(r-s)X , X + .
Yn+2 ( ) n+in Yn+1Yn

Replace the 'aj'" in the first line of p. 134 by "aj't .
4, Replace the minus sign in the line preceding (15) on p. 134 by a plus.

5. Delete the first "4E" on the first line of page 136.
* & ok kK

Please also correct ""A Shift Formula for Recurrence Relations of Order m, "

The Fibonacci Quarterly, December 1967, Vol. 5, No. 5, pp. 461-465, by re-

placing the ''pp,'"" in the sum on the last line of p. 462 by "Proi'

* k& & ok Kk
Please make the following correction in

" The Fibonacc? Quarterly, November, 1967, Vol. 5, No. 4, p. 370:

In the fourth line from the bottom, replace "difference of each pair' with

"differences of the pairs. "
* K A &



