A COMBINATORIAL PROBLEM INVOLVING FIBONACCI NUMBERS

J. L. Brown, Jr.

The Pennsylvania State University, University Park, Pa.

In Advanced Problem H-70 (this Quarterly, Vol. 3, No. 4, p. 299), C. A. Church, Jr. proposed the following combinatorial result:

"For n = 2m, show that the total number of k-combinations of the first n natural numbers such that no two elements i and i + 2 appear together in the same selection is F_{m+2}^2 and if n = 2m + 1, the total is $F_{m+2}F_{m+3}$." (Solution appears in [1].)

The purpose of this note is to consider by a different method a more general combinatorial problem which includes Church's problem as a special case. As in the latter problem, the explicit solution will be seen to be expressible entirely in terms of Fibonacci numbers.

<u>PROBLEM</u>: Given the set S consisting of the first n positive integers and a fixed integer ν satisfying $0 < \nu \leq n$, how many different subsets A of S (including the empty subset) can be formed with the property that a' - a" $\neq \nu$ for any two elements a', a" of A (that is, subsets A such that integers i and $i + \nu$ do not both appear in A for any $i = 1, 2, \dots, n - \nu$?

Church's problem is then recovered from the above formulation on taking $\nu = 2$.

For the solution of the general problem, we let n = m + r with m an integer and $0 \le r \le \nu$, so that $n = r \pmod{\nu}$. Each subset A of S can be made to correspond to an ordered binary sequence of n terms, $(\alpha_1, \alpha_2, \cdots, \alpha_n)$, by the rule that $\alpha_i = 1$ if $i \in A$ and $\alpha_i = 0$ if $i \notin A$. For a given subset A and its corresponding binary sequence $(\alpha_1, \alpha_2, \cdots, \alpha_n)$, we define ν ordered binary sequences $A_1, A_2, \cdots, A_{\nu}$ as follows: For $1 \le j \le r$,

$$A_{j} = (\alpha_{j}, \alpha_{j+\nu}, \alpha_{j+2\nu}, \cdots, \alpha_{j+m\nu})$$

and for $r < j \leq \nu$

$$A_{j} = (\alpha_{j}, \alpha_{j+\nu}, \alpha_{j+2\nu}, \cdots, \alpha_{j+(m-1)\nu})$$

1968] A COMBINATORIAL PROBLEM INVOLVING FIBONACCI NUMBERS 35

Note that each of the terms $\alpha_1, \alpha_2, \dots, \alpha_n$ is included in one and only one of these sequences, since for $j = 1, 2, \dots, \nu - 1$, the sequence A_j contains all α_i 's with $i = j \pmod{\nu}$ while A_{ν} contains all α_i 's with $i = 0 \pmod{\nu}$.

Now if the subset A under consideration satisfies the problem constraint, then clearly none of the sequences $\{A_j\}_{1}^{\nu}$ can contain two consecutive ones; conversely, if A contains both i and $i + \nu$ for some i_0 satisfying $1 \le i_0 \le n - \nu$, then the sequence A_k , where $k = i_0 \pmod{\nu}$ will contain two successive ones. Thus the subset A under consideration will satisfy the given constraint if and only if each A_j ($j = 1, 2, \dots, \nu$) is a binary sequence without consecutive ones. But it is well known ([2], Problem 1(b), p. 14; [3], pp. 166-167) that the total number of binary sequences of length t without consecutive ones is F_{t+2} . Since each of the r sequences A_1, A_2, \dots, A_r has length m +1 and each of the remaining $\nu - r$ sequences A_{r+1}, \dots, A_{ν} has length m, it follows that the total number of subsets of A with the desired property is

$$F_{m+3}^r F_{m+2}^{\nu-r}$$

To obtain Church's result, we take $\nu = 2$ and let n = 2m + r where r = 0 or r = 1, so that $n = r \pmod{2}$. Then the total number of k-combinations of the first n integers such that no elements i and i + 2 appear together is

$$F_{m+3}^{0} F_{m+2}^{2} = F_{m+2}^{2}$$
 if $r = 0$ (n even)

and

$$F_{m+3} F_{m+2}$$
 if $r = 1$ (n odd).

Additional references dealing with the case $\nu = 2$ may be found in [1].

REFERENCES

- 1. C. A. Church, Jr., Problem H-70, Solution and Comments, <u>The Fibonacci</u> <u>Quarterly</u>, Vol. 5, No. 3, October, 1967, pp. 253-255.
- 2. J. Riordan, <u>An Introduction to Combinatorial Analysis</u>, John Wiley and Sons, Inc., N. Y. C., 1958. Problem 1(b), p. 14.
- 3. J. L. Brown, Jr., "Zeckendorf's Theorem and Some Applications," <u>The</u> <u>Fibonacci Quarterly</u>, Vol. 2, No. 3, Oct. 1964, pp. 163-168.

EDITORIAL NOTE: The restraint that $0 \le \nu \le n$ can be removed. Set m = 0, so that number of subsets becomes $F_{m+3}^r F_{m+2}^{\nu-r} = F_3^r F_2^{\nu-r} = 2^r$ as is well known for the numbers of subsets of 1, 2, 3, ..., n without constraints. V.E.H.