A COMBINATORIAL PROBLEM INVOLVING FIBONACCI NUMBERS

J. L. Brown, Jr.
The Pennsylvania State University, University Park, Pa.

In Advanced Problem H-70 (this Quarterly, Vol. 3, No. 4, p. 299), C. A. Church, Jr. proposed the following combinatorial result:
"For $n=2 m$, show that the total number of k-combinations of the first n natural numbers such that no two elements i and $i+2$ appear together in the same selection is $\mathrm{F}_{\mathrm{m}+2}^{2}$ and if $\mathrm{n}=2 \mathrm{~m}+1$, the total is $\mathrm{F}_{\mathrm{m}+2} \mathrm{~F}_{\mathrm{m+} \mathrm{H}^{0}}{ }^{\prime \prime}$ (Solution appears in [1] 。)

The purpose of this note is to consider by a different method a more general combinatorial problem which includes Church's problem as a special case. As in the latter problem, the explicit solution will be seen to be expressible entirely in terms of Fibonacci numbers.

PROBLEM: Given the set S consisting of the first n positive integers and a fixed integer ν satisfying $0<\nu \leq n$, how many different subsets A of S (including the empty subset) can be formed with the property that $a^{\prime}-a^{\prime \prime}$ $\neq \nu$ for any two elements a^{p}, a^{11} of A (that is, subsets A such that integers i and $\mathrm{i}+\nu$ do not both appear in A for any $\mathrm{i}=1,2, \cdots, \mathrm{n}-\nu)$?

Church's problem is then recovered from the above formulation on taking $\nu=2$ 。

For the solution of the general problem, we let $\mathrm{n}=\mathrm{m}+\mathrm{r}$ with m an integer and $0 \leq r \leq \nu$, so that $n=r(\bmod \nu)$. Each subset A of S canbe made to correspond to an ordered binary sequence of n terms, ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$) by the rule that $\alpha_{i}=1$ if $i \in A$ and $\alpha_{i}=0$ if $i \notin A$. For a given subset A and its corresponding binary sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, we define ν ordered binary sequences $A_{1}, A_{2}, \cdots, A_{\nu}$ as follows: For $1 \leq j \leq r$,

$$
A_{j}=\left(\alpha_{j}, \alpha_{j+\nu}, \alpha_{j+2 \nu}, \cdots, \alpha_{j+m \nu}\right)
$$

and for $r<j \leq \nu$

$$
\mathrm{A}_{\mathrm{j}}=\left(\alpha_{\mathrm{j}}, \alpha_{\mathrm{j}+\nu}, \alpha_{\mathrm{j}+2 \nu^{\prime}}, \cdots, \alpha_{\mathrm{j}+(\mathrm{m}-1) \nu}\right)
$$

Note that each of the terms $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is included in one and only one of these sequences, since for $j=1,2, \cdots, \nu-1$, the sequence A_{j} contains all $\alpha_{i}{ }^{\prime} S$ with $i=j(\bmod \nu)$ while A_{ν} contains all $\alpha_{i}{ }^{\prime} S$ with $i=0(\bmod \nu)$.

Now if the subset A under consideration satisfies the problem constraint, then clearly none of the sequences $\left\{A_{j}\right\}_{i}^{\nu}$ can contain two consecutive ones; conversely, if A contains both i and $i+\nu$ for some i_{0} satisfying $I \leq i_{0}$ $\leq \mathrm{n}-\nu$, then the sequence $\mathrm{A}_{\mathrm{k}^{9}}$ where $\mathrm{k}=\mathrm{i}_{0}(\bmod \nu)$ will contain two successive ones. Thus the subset A under consideration will satisfy the given constraint if and only if each $A_{j}(j=1,2, \cdots, \nu)$ is a binary sequence without consecutive ones. But it is well known ([2], Problem I(b), p. 14; [3], pp. 166167) that the total number of binary sequences of length t without consecutive ones is $F_{t+2^{\circ}}$ Since each of the r sequences $A_{1}, A_{2}, \cdots, A_{r}$ has length $m+$ 1 and each of the remaining $\nu-r$ sequences $A_{r+1} \mu^{\circ}, A_{\nu}$ has length m, it follows that the total number of subsets of A with the desired property is

$$
\mathrm{F}_{\mathrm{m}+3}^{\mathrm{r}} \mathrm{~F}_{\mathrm{m}+2}^{\nu-\mathrm{r}}
$$

To obtain Church's result, we take $\nu=2$ and let $n=2 m+r$ where $r=0$ or $r=1$, so that $n=r(\bmod 2)$. Then the total number ofk-combinations of the first n integers such that no elements i and $i+2$ appear together is

$$
\mathrm{F}_{\mathrm{m}+3}^{0} \mathrm{~F}_{\mathrm{m}+2}^{2}=\mathrm{F}_{\mathrm{m}+2}^{2} \text { if } \mathrm{r}=0 \text { (} \mathrm{n} \text { even) }
$$

and

$$
F_{m+3} F_{m+2} \text { if } r=1 \text { (} n \text { odd) }
$$

Additional references dealing with the case $\nu=2$ may be found in [1].

REFERENCES

1. C. A. Church, Jr., Problem H-70, Solution and Comments, The Fibonacci Quarterly, Vol. 5, No, 3, October, 1967, pp. 253-255.
2. J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, Inc., $\mathrm{N}_{\mathrm{o}} \mathrm{Y}_{\mathrm{o}} \mathrm{C}_{0}, 1958_{\text {。 }}$ Problem 1(b), p. 14.
3. J. L. Brown, Jr., "Zeckendorf"s Theorem and Some Applications," The Fibonacci Quarterly, Vol. 2, No, 3, Oct. 1964, pp. 163-168.

EDITORIAL NOTE: The restraint that $0 \leq \nu \leq \mathrm{n}$ can be removed. Set $\mathrm{m}=$ 0 , so that number of subsets becomes $F_{m+3}^{r} F_{m+2}^{\nu-r}=F_{3}^{r} F_{2}^{\nu-r}=2^{r}$ as is well known for the numbers of subsets of $1,2,3, \ldots \ldots, n$ withoutconstraints. V. $\mathrm{E}_{\mathrm{o}} \mathrm{H}_{0}$

