RECREATIONAL MATHEMATICS

Joseph S. Madachy ${ }^{\star}$
4761 Bigger Rd., Kettering, Ohio

This column, hopefully, will serve the need for mathematical relaxation and make the reader look again at the other articles in the Fibonacci Quarterly with a mind more receptive to the fascination of mathematics. Actually, readers of this Journal are already inclined this way since this Journal is devoted to the study of one of the most fascinating series of numbers ever discovered.

Numbers, Fibonacci or otherwise, will not always be touched upon mathematics, after all, is more than that. I look forward to comments and contributions from readers.

DIGITAL DIVERSIONS

Express the Fibonacci numbers using the ten digits once only and in order and only the common mathematical operations and symbols. Try to avoid expressions included in brackets indicating the nearest whole integer. You should be able to extend the list below. It would be interesting to determine the largest possible Fibonacci number so expressible, or to see in how many different ways a given number can be expressed.

$$
\begin{aligned}
\mathrm{F}_{1}= & \mathrm{F}_{2}=1=0-1+2-3+4-5-6-7+8+9 \\
\mathrm{~F}_{3} & =2=0+(1)(2)-3+4-5-6-7+8+9 \\
\mathrm{~F}_{4} & =3=0-1+2-3-4+5-6-7+8+9 \\
\mathrm{~F}_{5} & =5=0+1-2+3-4+5-6+7-8+9 \\
\mathrm{~F}_{6} & =8=0+(1)(2)+3+4-5-6-7+8+9 \\
\mathrm{~F}_{7} & =13=0+1+2+3-4-5+6-7+8+9 \\
\mathrm{~F}_{8} & =21=0-1+2+3+4-5-6+7+8+9 \\
\mathrm{~F}_{9} & =34=0+(1)(2)+3+4-5+6+7+8+9
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \mathrm{F}_{10}=55=0+12+34+5-6-7+8+9 \\
& \mathrm{~F}_{11}=89=0+1+2+34+56+7-8-\sqrt{9} \\
& \mathrm{~F}_{12}=144=0+1+2+3+4+5!+6+7-8+9
\end{aligned}
$$
\]

A DUDENEY PROBLEM

Henry Ernest Dudeney (1857-1930), one of England's foremost puzzlists once posed the following problem: "It will be found that $32,547,891$ multiplied by 6 (thus using all the nine digits once, and once only) gives the product 195, 287, 346 (also containing all the nine digits once, and once only). Can you find another number to be multiplied by 6 under the same conditions? Remember that the nine digits must appear once, and once only, in the numbers multiplied and in the product."

Dudeney, in [1], included this problem, with the answer (6) $(94,857,312)$ $=569,143,872$. Martin Gardner, in editing this book, added two solutions supplied by Victor Meally: (6) $(89,745,321)=538,471,926$ and (6) $(98,745,231)$ $=592,471,386$. With the help of a table constructed in 1963 by Harry L . Nelson of Livermore, California, I found that there are actually 87 solutions to this problem. These are listed in Table 1.

An obvious variation on Dudeney's problem is to ask the same question, but include zero as the tenth digit. There are 17410 -digit solutions derivable from Table 1 by simply appending a zero to one of the factors and the product. Examination of the table discloses many additional 10-digit solutions with the zero not at a terminal position. For example, the first three listed each yield two additional 10-digit solutions:

$$
\begin{aligned}
& (6)(201,578,943)=1,209,473,658 \\
& (6)(215,078,943)=1,290,473,658 \\
& (6)(230,158,794)=1,380,952,764 \\
& (6)(231,508,794)=1,389,052,764 \\
& (6)(245,098,731)=1,470,592,386 \\
& (6)(245,987,301)=1,475,923,806
\end{aligned}
$$

I leave it to the reader to find the other 10 -digit solutions derivable from the table. However, I feel sure there may be other 10 -digit solutions to the

Table 1
Solutions to Dudeney's Nine-Digit Problem

6. $\times 21578943=129473658$	$6 \times 42985731=257914386$	$6 \times 73195428=439172568$
$6 \times 23158794=138952764$	$6 \times 43152789=258916734$	$6 \times 78195423=469172538$
$6 \times 24598731=147592386$	$6 \times 43195728=259174368$	$6 \times 78219543=469317258$
$6 \times 24958731=149752386$	$6 \times 43219578=259317468$	$6 \times 78549231=471295386$
$6 \times 27548913=165293478$	$6 \times 43271958=259631748$	$6 \times 78942153=473652918$
$6 \times 27891543=167349258$	$6 \times 45719283=274315698$	$6 \times 78943152=473658912$
$6 \times 27893154=167358924$	$6 \times 45719328=274315968$	$6 \times 79854231=479125386$
$6 \times 28731594=172389564$	$6 \times 45728193=274369158$	$6 \times 81954273=491725638$
$6 \times 28943157=173658942$	$6 \times 45731928=274391568$	$6 \times 82719543=496317258$
$6 \times 29415873=176495238$	$6 \times 45781923=274691538$	$6 \times 85473291=512839746$
$6 \times 31275489=187652934$	$6 \times 45782193=274693158$	$6 \times 85491273=512947638$
$6 \times 31542789=189256734$	$6 \times 45819273=274915638$	$6 \times 87249531=523497186$
$6 \times 31578942=189473652$	$6 \times 45827193=274963158$	$6 \times 87294153=523764918$
$6 \times 31587294=189523764$	$6 \times 47328591=283971546$	$6 \times 87315294=523891764$
$6 \times 32458971=194753826$	$6 \times 47532891=285197346$	$6 \times 87495231=524971386$
$6 \times 32547891=195287346$	$6 \times 48572931=291437586$	$6 \times 87941523=527649138$
$6 \times 32714589=196287534$	$6 \times 48579231=291475386$	$6 \times 89145327=534871962$
$6 \times 32897541=197385246$	$6 \times 48591273=291547638$	$6 \times 89532471=537194826$
$6 \times 41527893=249167358$	$6 \times 48912753=293476518$	$6 \times 89532714=537196284$
$6 \times 41957283=251743698$	$6 \times 49285731=295714386$	$6 \times 89745321=538471926$
$6 \times 41957328=251743968$	$6 \times 52487931=314927586$	$6 \times 94152873=564917238$
$6 \times 41957823=251746938$	$6 \times 52874931=317249586$	$6 \times 94857123=569142738$
$6 \times 41958273=251749638$	$6 \times 52987431=317924586$	$6 \times 94857213=569143278$
$6 \times 42195783=253174698$	$6 \times 71528943=429173658$	$6 \times 94857312=569143872$
$6 \times 42319578=253917468$	$6 \times 71954283=431725698$	$6 \times 95248731=571492386$
$6 \times 42719583=256317498$	$6 \times 71954328=431725968$	$6 \times 97328541=583971246$
$6 \times 42731958=256391748$	$6 \times 72819543=436917258$	$6 \times 98541273=591247638$
$6 \times 42789153=256734918$	$6 \times 72854931=437129586$	$6 \times 98724531=592347186$
$6 \times 42819573=256917438$	$6 \times 72985431=437912586$	$6 \times 98745231=592471386$

problem that are not derivable from the table. At this point, I can only hope that someone will use a computer to find all the 10 -digit solutions to this particular problem.

The Nelson table mentioned previously was constructed in answer to a query I had made concerning the solution to the problem: What two or more factors containing the nine (or ten) digits once only yield a product containing the nine (or ten) digits once only? Nelson's computer-calculated table listed all 2,624 solutions to the 9 -digit case (zero excluded). (See [4] for a discussion of this table.) The work involved in finding all the 10 -digit solutions was not done. Included in Nelson's table are all the solutions to two other variations on Dudeney's problem. Substitute 3 or 9 in place of 6 as a factor. There are 335 solutions to the $(3)(A)=B$ variation and 144 solutions to the $(9)(C)=B$ variation, where A contains eight distinct digits (excluding zero and 3), B contains nine distinct digits (zero excluded,) and C contains eight distinct digits (zero and 9 excluded). Interested readers may obtain one free copy of these $(3)(A)=B$ and $(9)(C)=B$ tables simply by requesting them. Please, only one copy. If you want more, include at least five cents postage for every two copies.

ANOTHER DUDENEY PROBLEM

Dudeney once asked what numbers have cube roots equal to the sum of their digits. Excluding the trivial $1^{3}=1$, Dudeney [2] gave the five solutions: 512, 4913, 5832, 17576, and 19683. That is, $5 \overline{12}=(5-1+2)^{3}=8^{3}$; $(4+9+1+3)^{3}=17^{3}$; and so on.

Some years ago, I asked T. Charles Jones, then a student at Davidson College in Davidson, North Carolina, to run a computer search for solutions to this problem for $n^{\text {th }}$ roots to $n=101$. (The requests I sometimes put to people are not often trivial.) Elsewhere [4] I've shown how one might systematically search for these rather interesting numbers. These numbers which, by the way, lack a precise name ${ }^{\star}$ - can be written as

$$
N=a b c d \cdots=(a+b+c+d+\cdots)^{n}=P^{n}
$$

[^1]where abcd... represents the digits of N, and ($a+b+c+d+\cdots$) represents the sum of the digits of N . Table 2 lists the 432 values of P which, when related to the $\mathrm{n}^{\text {th }}$ power, yield an N , the sum of whose digits is equal to P.

One of the interesting aspects of this problem is that there is at least one representative for every n from $\mathrm{n}=2$ to $\mathrm{n}=101$, with a maximum number (13) of representations at $n=25$. Trivial representations such as $1^{n}=$ 1 are not listed. The greatest number of times that a given P occurs is five: $P^{n}=N$ for $P=90$ and $n=19,20,21,22$, and 28 . The fully printedout numbers total 19 computer sheets, but readers might be interested in seeing several of the larger examples.

$181{ }^{16}$	=	13	26958	063637	75768	00539	94757	97274	10881
187^{16}	=	223	35968	621526	63449	25885	78257	92399 :	57441
499^{43}	$=$	10	43094	03484	75692	24451	60376	10004	44524
			27960	69557	10166	43340	61295	76132	73343
			99292	16069	53092	75509	14486	32354	72591
			73992	71499					
99975	$=$	92770	- 86733	- 90001	146643	321616	- 99937	758761	127716
		93772	- 92872	78273	34425	$5 \quad 52852$	200275	513591	127714
		15647	- 08297	724430	$0 \quad 57342$	$2 \quad 37029$	914944	428952	264407
		21199	- 26192	76548	853218	872362	223108	852440	- 33783
		01874	409642	200691	- 32958	896038	880592	297398	810590
		35077	708174	461752	222250	$0 \quad 74999$			

The largest known number of this type is 1468^{101} which contains 320 digits — whose sum is 1468.

I found, quite by accident, one example of $P^{n}=N$ where the sum of the digits in N is equal to n :

$$
2^{70}=1,180,591,620,717,411,303,424
$$

Are there any more of this type?

Table 2
$N=P^{n}$, Where the Sum of the Digits in N equal P

Table 2
(Continued from P. 65)

A FIBONACCI VARIATION

Everyone tries his hand at variations on the Fibonacci theme. Mark Feinberg [3] has given us the Tribonacci and Tetranacci numbers, for example, where the terms of the series are the sums of the previous three or four terms, respectively. I hate to be excluded, so here's mine. The results turned out to be interesting, if not exactly stupendous. Form the ${ }_{n} F$ series in each term is the sum of the NEXT TWO terms, and which starts with ${ }_{0} \mathrm{~F}=0$ and ${ }_{1} \mathrm{~F}=1$. The series, then, is

$$
0,1,-1,2,-3,5,-8,13,-21,34,-55, \text { etc. }
$$

Note that if n is zero or even, the ${ }_{n} F=-F_{n}$; if n is odd, then ${ }_{n} F=$ F_{n}. Can anyone do anything with this series?

SOME FIBONACCI QUERIES

What Fibonacci numbers are integral multiples of the sums of their digits? For example,
$\mathrm{F}_{8}=21,2+1=3$, and $(3)(7)=21 ; \mathrm{F}_{12}=144,1+4+4=9$, and
$(9)(16)=144 ; \quad \mathrm{F}_{18}=2584,2+5+8=19, \quad$ and $(19)(136)=2584$.

I'm sure there are more. Are there an infinite number of them? Are they a function of n ?

Somewhat related to the above is the problem of finding $F_{n}=N$, such that $\mathrm{N}=\mathrm{nk}$, where k is a positive integer. For example,

$$
\left.\mathrm{F}_{1}=1 ; \mathrm{F}_{5}=5 ; \mathrm{F}_{12}=144 \text { (here } \mathrm{k}=12\right) ; \mathrm{F}_{25}=75025 \text { (here } \mathrm{k}=3001 \text {) }
$$

Is there a formula relating these?

REFERENCES

1. Dudeney, Henry Ernest, 536 Puzzles and Curious Problems, edited by Martin Gardner, Charles Scribner's Sons, N. Y. , 1967, pp. 41 and 257.
2. Ibid, pages 36-37 and 253.
3. Feinberg, Mark, "Fibonacci-Tribonacci," Fibonacci Quarterly, Vol. 1, No. 3 (October 1963), pp. 71-74.
4. Madachy, Joseph S., Mathematics on Vacation, Charles Scribner's Sons, N. Y. , 1966, Chapter 6.
5. Rumney, Max, "Digital Invariants," Recreational Mathematics Magazine. No. 12 (December 1962), pp. 6-8.

[^0]: ${ }^{\star}$ Editor of The Journal of Recreational Mathematics: co-author, with J. A. H. Hunter, of Mathematical Diversions: author of Mathematics on Vacation: former owner-publisher-editor of the defunct Recreational Mathematics Magazine.

[^1]: *In [4] numbers which are representable, in some way, by mathematically manipulating their digits are called narcissistic. Closely related to the above numbers are those which are equal to the sum of the nth powers of their digits; e.g., $153=1^{3}+5^{3}+3^{3}$. Such numbers are called Perfect Digital Invariants (PDI's) by Max Rumney of England, who has studied them extensively [5].

