ON A PARTITION OF GENERALIZED FIBONACCI NUMBERS

S. G. Mohanty McMaster University, Hamilton, Ontario, Canada

As a continuation of results in [4], this paper deals with the concept of minimal and maximal representations of positive integers as sums of generalized Fibonacci numbers (G. F. N.) defined below and presents a partition of the G. F. N. in relation to either minimal or maximal representation.

Consider the sequence $\left\{\mathrm{F}_{\mathrm{t}}\right\}$, where
(1)

$$
\text { and } \begin{aligned}
\mathrm{F}_{1}=\mathrm{F}_{2}=\cdots=\mathrm{F}_{\mathrm{r}}=1, & \mathrm{r} \geqslant 2 \\
\mathrm{~F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{t}-1}+\mathrm{F}_{\mathrm{t}-\mathrm{r}}, & \mathrm{t} \geqslant \mathrm{r}
\end{aligned}
$$

Obviously, the sequence gives rise to the sequence of Fibonacci numbers for $r=2$. For this reason, we call $\left\{F_{t}\right\}$ a sequence of G. F. N. Clearly $\left\{F_{t}\right\}$ is a special case of Daykin's Fibonacci sequence [3], as well as of Harris and Styles' sequence [6].

We remark that it is possible to express any positive integer N as a sum of distinct F_{i}^{\prime} s, subject to the condition that $F_{1}, F_{2}, \cdots, F_{r-1}$ are not used in any sum (reference: Daykin's paper [3]). In other words, we can have

$$
\begin{equation*}
N=\sum_{i=r}^{s} a_{i} F_{i} \tag{2}
\end{equation*}
$$

with $a_{s}=1$ and $a_{i}=1$ or $0, r \leqslant i \leqslant s$. Here s is the largest integer such that F_{S} is involved in the sum.

Definition 1: In case (2) is satisfied, the vector ($a_{r}, a_{r+1}, \cdots, a_{s}$) of elements 1 or 0 with $a_{s}=1$, is called a representation of N in $\left\{F_{t}\right\}$, having its index as s .

Definition 2: A representation of N in $\left\{\mathrm{F}_{\mathrm{t}}\right\}$ is said to be minimal or maximal according as $a_{i} a_{i+j}=0$ or $a_{i}+a_{i+j} \geqslant 1$, for all $i \geqslant r$ and $j=$ $1,2, \cdots, r-1$.

Definition 2 is just an extension of that by Ferns [4] to $r>2$.
Now, we state some results in the forms of lemmas, to be used subsequently.

Lemma 1:
(i) Every positive integer N has a unique minimal representation;
(ii) The index of the minimal representation of $N\left(F_{n} \leq N<F_{n+1}, n \geq r\right)$
is n. If $N=F_{n}$, then $a_{r}=a_{r+1}=\cdots=a_{n-1}=0$ 。
Lemma 2:
(i) Every positive integer N has a unique maximal representation:
(ii) The index of the maximal representation of $N\left(F_{n+r-1}-r<N \leq F_{n+r}\right.$ $-r, n \geq r$) is n. If $N=F_{n+r}-r$, then $a_{r}=a_{r+1}=\cdots=a_{n-1}=1$ 。

Lemma 3. If the minimal representation of

$$
N^{\prime}=\mathrm{F}_{\mathrm{n}+\mathrm{r}}-\mathrm{r}-\mathrm{N} \quad\left(\mathrm{~F}_{\mathrm{u}} \leq \mathrm{N}^{\prime}<\mathrm{F}_{\mathrm{u}+1}, \quad \mathrm{n} \geq \mathrm{r}, \mathrm{r} \leq \mathrm{u} \leq \mathrm{n}-1\right)
$$

is

$$
\left(a_{r}, \dot{a}_{r+1}, \cdots, a_{u}\right)
$$

then the maximal representation of N

$$
\left(F_{n+r}-F_{u+1}-r<N \leq F_{n+r}-F_{u}-r\right)
$$

is

$$
\left(1-a_{r}, 1-a_{r+1}, \cdots, 1-a_{u}, \frac{1,1, \cdots, 1)}{n-u}\right.
$$

and conversely.
Note that Lemma 3 provides a method of construction of the maximal (minimal) representation, given the minimal (maximal) representation of integers. Furthermore, the last time a zero occurs in the maximal representation of $N\left(F_{n+r}-F_{u+1}-r<N \leq F_{n+r}-F_{u}-r\right)$, is at the $(u-r+1)$ st position, that is, $1-a_{u}=0$.

Proof. The proof of Lemma 1 is given in [3] as Theorem C. (Also see Brown's paper [1].) A generalized argument similar to that in the proof of

Theorem 1 in [2] would lead us to Lemma 2 and Lemma 3. However, the basic steps of the proof are indicated.

First, we assert that
(3)

$$
\sum_{i=r}^{n} F_{i}+r=F_{r+n}
$$

When $\mathrm{n} \geq 2 \mathrm{r}-1$,

$$
\sum_{i=r}^{n} F_{i}+r=F_{r}+\cdots+F_{2 r-2}+F_{2 r-1}+F_{2 r}+\cdots+F_{n}
$$

(since $r=F_{2 r-1}$)

$$
\begin{aligned}
& =\mathrm{F}_{\mathrm{r}+1}+\cdots+\mathrm{F}_{2 \mathrm{r}-1}+2 \mathrm{~F}_{2 \mathrm{r}}+\mathrm{F}_{2 \mathrm{r}+1}+\cdots+\mathrm{F}_{\mathrm{n}} \\
& =\mathrm{F}_{\mathrm{r}+\mathrm{n}} .
\end{aligned}
$$

When $\mathrm{n}<2 \mathrm{r}-1$, (3) can also be checked.
Next, we develop a method to construct a maximal representation from the system of minimal representation, and finally show that this representation is unique.

When

$$
\mathrm{F}_{\mathrm{n}+\mathrm{r}-1}-\mathrm{r}<\mathrm{N} \leq \mathrm{F}_{\mathrm{n}+\mathrm{r}}-\mathrm{r}
$$

i. e. ,

$$
\sum_{i=r}^{n-1} F_{i}<N \leq \sum_{i=r}^{n} F_{i}, \quad \text { (by (3)) }
$$

we get

$$
\begin{equation*}
N^{r}=F_{n+r}-r-N=\sum_{i=r}^{n} F_{i}-N<\sum_{i=r}^{n} F_{i}-\sum_{i=1}^{n-1} F_{i}=F_{n} \tag{4}
\end{equation*}
$$

Because of (4) and Lemma 1, let us assume that

$$
\mathrm{F}_{\mathrm{u}} \leq \mathrm{N}^{\prime}<\mathrm{F}_{\mathrm{u}+1}, \quad \mathrm{r} \leq \mathrm{u} \leq \mathrm{n}-1
$$

and that N^{\prime} has the minimal representation $\left(a_{r}, a_{r+1}, \cdots, a_{u}\right)$. Thus, (b_{r}, b_{r+1}, \cdots, b_{n}, where

$$
b_{i}=\left\{\begin{array}{cl}
1-a_{i}, & i=r, r+1, \cdots, u \\
1 & , i=u+1, u+2, \cdots, n
\end{array}\right.
$$

is a maximal representation of N as we can show that $b_{i}+b_{i+j} \geq 1$ from $a_{i} a_{i+j}=0$ for all $i \geq r$ and $j=1,2, \cdots, r-1$.

Suppose that two maximal representations of N are given by

$$
N=\sum_{i=r}^{n} a_{i} F_{i}=\sum_{i=r}^{n} a_{i}^{\prime} F_{i}, \quad a_{n}=a_{n^{\prime}}^{\prime}=1,
$$

with $n>n^{\prime}$. Letting $n=c r+d$, we obtain

$$
\begin{align*}
& \quad \begin{array}{l}
\sum_{i=r}^{n} a_{i} F_{i} \geq F_{n}
\end{array}+F_{n-2}+F_{n-3}+\cdots+F_{n-r} \tag{5}\\
& \\
& +F_{n-r-2}+F_{n-r-3}+\cdots+F_{n-2 r} \\
& \\
& +\cdots \\
& \\
& +F_{n-(c-2) r-2}+\cdots+F_{n-(c-1) r} \\
& =F_{n+1}+F_{n-1}+F_{n-2}+\cdots+F_{n+2-r}-(r-1) \\
& =F_{n+r-1}-(r-1) \quad .
\end{align*}
$$

But

$$
\sum_{i=r}^{n^{\prime}} a^{\prime}{ }_{i} F_{i} \leq \sum_{i=r}^{n^{\prime}} F_{i} \leq \sum_{i=r}^{n-1} F_{i}=F_{n+r-1}-r, \text { by (3) }
$$

This is a contradiction of (5) and therefore $n=n$ 。
From

$$
N=\sum_{i=r}^{n}\left(1-a_{i}\right) F_{i}=\sum_{i=r}^{n}\left(1-a_{i}^{\prime}\right) F_{i}
$$

it follows that

$$
N^{\star}=\sum_{i=r}^{n}\left(1-a_{i}\right) F_{i}=\sum_{i=r}^{n}\left(1-a_{i}^{\prime}\right) F_{i}
$$

which corresponds to two admissible minimal representations of N^{\star}. The proof is complete, due to Lemma. 1.

Definition 3: Define $U\left(n ; m_{1}, m_{2}, \cdots, m_{r}\right)$ as the number of positive integers N satisfying the following: (the definition arises as a natural consequence of Lemma 1)
(i) $\mathrm{F}_{\mathrm{n}} \leq \mathrm{N}<\mathrm{F}_{\mathrm{n}+1}, \mathrm{n} \geq \mathrm{r}$;
(ii) In the minimal representation ($a_{r}, a_{r+1}, \cdots, a_{n}$) of N, there are exactly $m_{i}{ }^{a_{\alpha}^{\prime}}{ }^{\prime}$ s amongnon-zero $a^{\prime} s$ except a_{n}, such that $\alpha \equiv i-1(\bmod r)$ $i=1,2, \cdots, r$.

An illustration of the definition for $\mathrm{r}=3$, might serve a useful purpose. Consider all integers $N, F_{10} \leq N<F_{11}$ and their respective minimal representations are:

$$
\begin{aligned}
& 19=F_{10}, \quad 20=F_{3}+F_{10}, \quad 21=F_{4}+F_{10}, \quad 22=F_{5}+F_{10}, 23=F_{6}+F_{10}, \\
& 24=F_{3}+F_{6}+F_{10}, 25=F_{7}+F_{10}, \quad 26=F_{3}+F_{7}+F_{10}, 27=F_{4}+F_{7}+F_{10} .
\end{aligned}
$$

Then we have
$\mathrm{U}(10 ; 0,0,0)=1, \mathrm{U}(10,1,0,0)=2, \mathrm{U}(10 ; 0,1,0)=2$,
$U(10 ; 0,0,1)=1, U(10 ; 2,0,0)=1, U(10,1,1,0)=1$, $\mathrm{U}(10,0,2,0)=1$ 。

It may be observed that a_{n} is omitted in the definition without any ambiguity, as it is present in every representation. Furthermore, it is significant to note that Definition 3 gives rise to a partition of the G. F. N.

Following the procedure in [4] on pages 23 and 24, we can show that either by replacing F_{n-1} by F_{n} in the minimal representation of every N_{1}, $\mathrm{F}_{\mathrm{n}-1} \leq \mathrm{N}_{1}<\mathrm{F}_{\mathrm{n}}$, or by adding F_{n} in the minimal representation of every N_{2}, $\mathrm{F}_{\mathrm{n}-\mathrm{r}} \leq \mathrm{N}_{2}<\mathrm{F}_{\mathrm{n}-\mathrm{r}+1}$, we get the minimal represent ation of every $\mathrm{N}, \mathrm{F}_{\mathrm{n}} \leq \mathrm{N}$ $<\mathrm{F}_{\mathrm{n}+1^{\circ}}$ Therefore, $\mathrm{U}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)$ satisfies the following difference equations:

$$
\text { For } \mathrm{m}>1
$$

(6)

$$
\begin{aligned}
& \mathrm{U}\left(\mathrm{rm} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)= \mathrm{U}\left(\mathrm{rm}-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
&+\mathrm{U}\left(\mathrm{r}(\mathrm{~m}-1) ; \mathrm{m}_{1}-1, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
& \mathrm{U}\left(\mathrm{rm}+1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)=\mathrm{U}\left(\mathrm{rm} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
& \vdots \quad+\mathrm{U}\left(\mathrm{r}(\mathrm{~m}-1)+1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}-1, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
& \mathrm{B}\left(\mathrm{rm}+\mathrm{r}-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)=\mathrm{U}\left(\mathrm{rm}+\mathrm{r}-2 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
&+ \mathrm{U}\left(\mathrm{r}(\mathrm{~m}-1)+\mathrm{r}-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}-1\right) .
\end{aligned}
$$

Obviously, the boundary conditions given below can easily be checked. These are:

$$
\begin{align*}
& \text { For } \mathrm{n}<\mathrm{r} \text { or for any } \mathrm{m}_{\mathrm{i}}<0 \text {, } \\
& \begin{array}{l}
U\left(n ; m_{1}, m_{2}^{\prime}, \cdots, m_{r}\right)=0 ; \\
r \leq n<2 r\left(i_{0} e_{.}, \text {for } m=1\right),
\end{array} \tag{7}\\
& \text { for } r \leq n<2 r \text { (} \mathrm{i}_{\circ} \mathrm{e}_{\mathrm{o}} \text {, for } \mathrm{m}=1 \text {), } \\
& =\left\{\begin{array}{l}
1 \text { when } m_{1}=m_{2}=\ldots=m_{r} \\
0 \text { otherwise }
\end{array}\right.
\end{align*}
$$

Theorem 1.
(8) $\quad U\left(n ; m_{1}, m_{2}, \cdots, m_{r}\right)=\left\{\begin{array}{c}\begin{array}{c}r \\ \prod_{k=1}\end{array}\binom{M+m_{k}}{m_{k}} \text { if } n=r m+(r-1), \\ \prod_{k=1}^{j+1}\binom{M+m_{k}}{m_{k}}\left[\begin{array}{c}r \\ \prod_{k=j+2} \\ \prod_{k}\end{array}\binom{M+m_{k}-1}{m_{k}} \underset{\substack{n=r m+j \\ \text { and } \\ 0 \leq j \leq r-2,}}{\text { if }}\right.\end{array}\right.$
where

$$
M=m-1-\sum_{i=1}^{r} m_{i}
$$

and

$$
\binom{x}{y}
$$

has the usual meaning with

$$
\binom{x}{y}=1 \quad \text { and }\binom{x}{y}=0
$$

when $\mathrm{y}<0$ or when $\mathrm{y}>\mathrm{x}_{\text {。 }}$
Proof. Trivially, the results are true when $m=1$. We can also verify these expressions for $m=2$. Assume that these are valid for $m \leq m$. Now,

$$
\begin{aligned}
& \mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\mathrm{r}}+1\right) ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
& =\mathrm{U}\left(\mathrm{rm}^{\mathrm{r}}+\mathrm{r}-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)+\mathrm{U}\left(\mathrm{rm}^{\mathrm{r}} ; \mathrm{m}_{1}-1, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
& =\underset{\mathrm{k}=1}{\mathrm{r}}\binom{\mathrm{M}^{\mathrm{t}}+\mathrm{m}_{\mathrm{k}}}{\mathrm{~m}_{\mathrm{k}}}+\binom{\mathrm{M}^{\mathrm{t}}+\mathrm{m}_{1}}{\mathrm{~m}_{1}-1} \underset{\mathrm{k}=2}{\mathrm{r}}\binom{\mathrm{M}^{\mathrm{t}}+\mathrm{m}_{\mathrm{k}}}{\mathrm{~m}_{\mathrm{k}}}, \\
& \text { where } M^{\prime}=m^{\prime}-1-\sum_{i=1}^{r} m_{i} \\
& =\binom{M^{\prime}+m_{1}+1}{m_{1}} \underset{\mathrm{k}=2}{\mathrm{r}}\binom{\mathrm{M}^{\mathrm{t}}+\mathrm{m}_{\mathrm{k}}}{\mathrm{~m}_{\mathrm{k}}}
\end{aligned}
$$

which establishes (8) for $m=m^{\prime}+1$ and $j=0$. Similar verifications for $m^{1}+1$ and $0<j \leq r-1$ complete the proof of Theorem 1.

Denoting $\Sigma_{\mu, r}^{\prime}$ as the summation over $m_{1}, m_{2}, \ldots, m_{r}$ with the restriction

$$
\sum_{i=1}^{r} m_{i}=\mu
$$

we get the following:

$$
\begin{equation*}
\frac{\text { Corollary 10 }}{\Sigma_{\mu, r}^{\ell}} \mathrm{U}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)=\binom{\mathrm{n}-(\mathrm{r}-1) \cdot \mu-\mathrm{r}}{\mu} . \tag{9}
\end{equation*}
$$

Proof. By induction, we shall prove the result, which is seen to be true for small values of n.

$$
\begin{equation*}
\sum_{\mu_{\mathrm{o}} \mathrm{r}} \mathrm{U}\left(\mathrm{rm}+j ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \tag{10}
\end{equation*}
$$

$=\sum_{v=0}^{\mu}\binom{m-v-2}{\mu-v} \Sigma_{v, r-1}^{\gamma} \mathrm{U}\left((\mathrm{r}-1)(\mathrm{m}-\mu+v)+j ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \dot{m}_{\mathrm{r}-1}\right)$
$=\sum_{\nu=0}^{\mu}\binom{\mathrm{m}-\nu-2}{\mu-\nu}\binom{(\mathrm{r}-1)(\mathrm{m}-\mu)+\mathrm{j}+\nu-\mathrm{r}+1}{\nu:}$, by induction hypothesis,
$=\sum_{\nu=0}^{\mu}\binom{\mathrm{rm}+\mathrm{j}-(\mathrm{r}-1) \mu-\mathrm{r}-\nu-1}{\mu-\nu} \quad$ by (1.13) of $[5]$,
$=\binom{r m+j-(r-1) \mu-r}{\mu} \quad$.

In addition to (10), a check for $\mathrm{j}=\mathrm{r}-1$ establishes (9).

Corollary 1 implies that the number of integers $N, \quad F_{n} \leq N<F_{n+1}$, which require $\mu+1$ G. F. N. for minimal representation is the right-hand expression in (9), and this is in agreement with the value in [4] for $r=2$.

Similar to

$$
\mathrm{U}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

we introduce in the next definition

$$
\mathrm{V}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

which corresponds to the maximal representation.
Definition 4. Define

$$
\mathrm{V}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

as the number of positive integers N with the following properties:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}+\mathrm{r}-1}-\mathrm{r}<\mathrm{N} \leq \mathrm{F}_{\mathrm{n}+\mathrm{r}}-\mathrm{r}, \quad \mathrm{n} \geq \mathrm{r} \tag{i}
\end{equation*}
$$

(ii) In the maximal representation ($a_{r}, a_{r+1}, \cdots, a_{n}$) of N, there are exactly $\mathrm{m}_{\mathrm{i}} \mathrm{a}^{\prime} \alpha^{\mathrm{s}}$ among $\mathrm{a}^{\prime} \mathrm{s}$ which are equal to zero, such that $\alpha \equiv \mathrm{i}-1(\bmod$ r), $i=1,2, \ldots, r$.

The definition is not vacuous, because of Lemma 2. As an illustration for $\mathrm{r}=3$, consider all $\mathrm{N}, \mathrm{F}_{10}-3<\mathrm{N} \leq \mathrm{F}_{11}-3$. The maximal representations of these integers are:

$$
\begin{aligned}
& 17=\mathrm{F}_{3}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{8}, \quad 18=\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{8}, \quad 19=\mathrm{F}_{3}+\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{8}, \\
& 20=\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{7}+\mathrm{F}_{8}, \quad 21=\mathrm{F}_{3}+\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{7}+\mathrm{F}_{8}, \quad 22=\mathrm{F}_{3}+\mathrm{F}_{4}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \\
& 23=\mathrm{F}_{3}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \quad 24=\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \\
& 25=\mathrm{F}_{3}+\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mathrm{V}(8 ; 0,0,0)=1, \mathrm{~V}(8 ; 1,0,0)=2, \mathrm{~V}(8 ; 0,1,0)=2 \\
& \mathrm{~V}(8 ; 0,0,1)=1, \mathrm{~V}(8 ; 2,0,0)=1, \mathrm{~V}(8 ; 1,1,0)=1, \quad \mathrm{~V}(8 ; 0,2,0)=1
\end{aligned}
$$

Compare these with $\mathrm{U}\left(10 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right)$ and observe the correspondence, which is essentially the result in the theorem given below.

Theorem 2.

$$
\mathrm{V}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)=\left\{\begin{array}{l}
0 \tag{10}\\
\mathrm{U}\left(\mathrm{n}+\mathrm{r}-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{r}}\right) \text { otherwise }
\end{array}\right.
$$

Proof. It is readily checked from the last part of Lemma 2(ii) that $\mathrm{V}\left(\mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)=1$ for every $\mathrm{n} \geqslant \mathrm{r}$, when $\mathrm{m}_{1}=\mathrm{m}_{2}=\ldots=\mathrm{m}_{\mathrm{r}}=0$. Therefore, we shall discuss the proof when $m_{i}{ }^{\prime} s$ are not simultaneously equal to zero.

Let $n=r m+j, \quad m \geqslant 0$ and $j=1,2, \cdots, r$. A direct verification of the theorem for $m=0,1$ is simple. Then, assume that it is true for $m \leq m^{\prime}$. By induction, we have to show that it holds good for $m=m^{\prime}+1$.

Putting $\mathrm{j}=1$, the set of integers counted in

$$
\mathrm{V}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right)+1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{r}\right)
$$

can be partitioned into two sets,

$$
\left\{N_{1}\right\}, F_{r\left(m^{\prime}+2\right)+1}-F_{r\left(m^{\prime}+1\right)}-r<N_{1} \leq F_{r\left(m^{\prime}+2\right)+1}-F_{r}-r
$$

and

$$
\left\{N_{2}\right\}, F_{r\left(m^{\prime}+2\right)+1}-F_{r\left(m^{\prime}+1\right)+1}-r<N_{2} \leq F_{r\left(m^{\prime}+2\right)+1}-F_{r\left(m^{\prime}+1\right)}-r
$$

each having property (ii) of Definition 4. By Lemma 3, we see that the maximal representation of every N_{1} has $a_{r\left(m^{\prime}+1\right)}=1$ and $a_{r\left(m^{\prime}+1\right)+1}=1$. Therefore,

$$
N_{1}^{\star}=N_{1}-F_{r\left(m^{\prime}+1\right)+1}, \quad F_{r\left(m^{\prime}+2\right)-1}-r<N_{1}^{\star} \leq F_{r\left(m^{\prime}+2\right)}-F_{r}-r
$$

has the maximal representation as that of N_{1} without the last element

$$
a_{r\left(m^{\prime}+1\right)+1}
$$

whereas $m_{i}{ }^{\prime}$ s corresponding to N_{1}^{\star} have not changed from those corresponding to N_{1}. Due to this 1:1 correspondence, the number in $\left\{N_{1}\right\}$ is the same as that in $\left\{N_{1}^{\star}\right\}$ which is equal to

$$
\mathrm{V}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right) ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

Using Lemma 3 again, we see that $\left\{N_{2}\right\}$ is in $1: 1$ correspondence with the set

$$
\left\{\mathrm{N}_{2}^{\star}\right\}, \mathrm{F}_{\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right)} \leq \mathrm{N}_{2}^{\star}<\mathrm{F}_{\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right)+1},
$$

such that in the minimal representation of N_{2}^{\star}, there are exactly $m_{i}{ }_{\alpha}{ }_{\alpha}{ }^{\prime} s$ among non-zero a^{\prime} 's including the last one, with $\alpha \equiv \mathrm{i}-1(\bmod r), i=1,2$, \cdots, r. The number in $\left\{N_{2}^{\star}\right\}$ is then equal to

$$
\mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right) ; \mathrm{m}_{1}-1, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

Hence,

$$
\begin{gathered}
\mathrm{V}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right)+1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
=\mathrm{V}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right) ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)+\mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right) ; \mathrm{m}_{1}-1, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right) \\
=\mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+2\right)-1 ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)+\mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+1\right) ; \mathrm{m}_{1}-1, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
\end{gathered}
$$

by induction hypothesis,

$$
=\mathrm{U}\left(\mathrm{r}\left(\mathrm{~m}^{\prime}+2\right) ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \cdots, \mathrm{~m}_{\mathrm{r}}\right)
$$

by (6).
The cases for $1<j \leqslant r$ can be treated analogously and thus the theorem is proved.

As a concluding remark we say that V^{\prime} 's define a partition of the G.F.N., which in view of Theorem 2, is the same as given by U'S. An application of partition is discussed elsewhere by the author.

I express my sincere appreciation to the referee and to Professor V. E. Hoggatt, Jr., for their suggestions and comments.

REFERENCES

1. J. L. Brown, Jr., "Zechendorf's Theorem and some Applications," The Fibonacci Quarterly, Vol. 2 (1964), pp. 163-168.
2. J. L. Brown, Jr., "A New Characterization of the Fibonacci Numbers," The Fibonacci Quarterly, Vol. 3 (1965), pp. 1-8.
3. D. E. Daykin, "Representation of Natural Numbers as sums of Generalized Fibonacci Numbers, " Journal of the London Math. Society, Vol. 35 (1960), pp. 143-161.
4. H. H. Ferns, "On the Representation of Integers as Sums of Distinct Fibonacci Numbers," The Fibonacci Quarterly, Vol. 3, (1965), pp. 21-30.
5. H. W. Gould, "Generalization of a Theorem of Jensen Concerning ConvoLutions, " Duke Math. Journal, Vol. 27 (1960), pp. 71-76.
6. V. C. Harris and C. C. Styles, "A Generalization of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2 (1964), pp. 277-289.
7. V. C. Harris and C. C. Styles, "Generalized Fibonacci Sequences Associated with a Generalized Pascal Triangle," The Fibonacci Quarterly, Vol. 4 (1966), pp. 241-248.

Please make the following changes in articles by C. W. Trigg, appearing in the December, 1967, Vol. 5, No. 5, issue of the Quarterly:
"Getting Primed for 1967 " - p. 472: In the fifth line, replace " $2669^{\prime \prime}$ with "2699."
"Curiosa in 1967" - pp. 473-476: On p. 473, place a square root sign over the 9 in " $73=\ldots$. "
On p. 474, (C), delete the "!" after the second 7.
On p. 474, (F), delete the " + " inside the parentheses.
On p. 475, (I), the last difference equals "999."
"A Digital Bracelet for 1967" - pp. 477-480: On page 478, line 7, replace the first "sum" with "sums."

