A FIBONACCI FUNCTION

Francis D. Parker
St. Lawrence University, Canton, N.Y.

Eric Halsey [1] has invented an ingenious method for defining the Fibonacci numbers $F(x)$, when x is a rational number. In addition to the restriction that x must be rational, his calculations yield

$$
F(4.1)=3.155, F(3.1)=2.1, F(1.1)=1.1,
$$

so that the Fibonacci identity

$$
F(x)=F(x-1)+F(x-2)
$$

is destroyed.
Fortunately, both of these defects can be remedied, and we can establish a function $F(z)$ which (a) coincides with the usual Fibonacci numbers when Z is an integer, (b) is defined for any complex number $z(c)$ is differentiable everywhere in the complex plane, and (d) is a real number when z is real. The construction is not difficult. Let λ be the larger of the two roots of

$$
\mathrm{y}^{2}-\mathrm{y}-1=0
$$

Then the Fibonacci formula

$$
F(n)=\frac{\lambda^{n}-(-1)^{n} \lambda^{-n}}{\sqrt{5}}
$$

could be applied directly for n a real number, but would be complex at, for example, $x=1 / 2$. By replacing $(-1)^{n}$ by a real function which takes on the value -1 for n odd and 1 for n even, we can extend $F(n)$ to all real values of n. Such a function is $\cos \pi n$. Hence a Fibonacci function can be written as

$$
F(z)=\frac{\lambda^{Z}-(\cos \pi z) \lambda^{-z}}{\sqrt{5}}
$$

An examination of this function shows easily that the stated properties are indeed satisfied.

It is possible to take this one step further. Any solution to the Fibonacci difference equation

$$
F(n)=F(n-1)+F(n-2)
$$

can be similarly treated to yield the equation

$$
\mathrm{F}(\mathrm{z})=\mathrm{C}_{1} \lambda^{\mathrm{z}}+\mathrm{C}_{2}(\cos \pi \mathrm{z}) \lambda^{-\mathrm{Z}}
$$

where C_{1} and C_{2} are determined from initial conditions.
In fact, it is possible to generalize even further and produce a similar formula for the solution of the difference equation

$$
f(n)=a f(n-1)+b f(n-2)
$$

Such a formula is

$$
\mathrm{f}(\mathrm{z})=\mathrm{C}_{1} \lambda^{\mathrm{Z}}+\mathrm{C}_{2} \mathrm{~b}^{\mathrm{Z}}(\cos \pi \mathrm{z}) \lambda^{-\mathrm{Z}}
$$

where λ is a solution to the quadratic equation

$$
y^{2}-a y-b=0
$$

In case these roots are equal, this formula takes the form

$$
f(z)=C_{1} \lambda^{Z}+C_{2} z \lambda^{Z}
$$

1. Eric Halsey, "The Fibonacci Number Fu, where u is not an Integer," The Fibonacci Quarterly, Vol. 3, No. 2, pp. 147-152.
