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1. INTRODUCTION 

A group will be cal led n - c i r c u l a r l y genera ted if i t has a set of n(>3) 

g e n e r a t o r s x1? x?, • • • , x such that x.x. ia = x.in for all i, where the 
& 1' *' n 1 1+1 1+2 

addition of subsc r ip t s i s modulo n. This notion was suggested to the author 

by a p rob lem in the Amer ican Mathemat ica l Monthly [1 ], which can be ph ra sed 

as follows: Show that a 5 -c i r cu la r ly genera ted group is cyclic of o r d e r 11. The 

p rob lem of de termining the s t r u c t u r e of c i r cu l a r l y genera ted groups in genera l 

appears formidable . They a r e not all abelian, for the fami l ia r quaternionic 

group [ 2, p . 8 ] c l ea r ly has this p rope r ty for n = 3. F u r t h e r m o r e , if we don' t 
ins i s t that the g e n e r a t o r s all be dis t inct , any dicyclic group is 6 - c i r cu l a r ly 

jYi—l 2—m genera ted with gene ra to r s S, T, ST, S , S T, and ST, in the notation 

of [ 2, p . 7 ] , However, the s t r u c t u r e of c i r cu l a r ly genera ted abelian groups 

can be completely de termined , as will be shown below. 

It should be observed that an n - c i r c u l a r l y genera ted group on x j , x2, 

' * * , x i s c l ea r ly genera ted by xA and x2, so if it i s abelian, it mus t e i the r 

be cycl ic o r the d i r ec t sum of exactly two cycl ic subgroups. F u r t h e r m o r e , 

any c i r c u l a r l y genera ted abelian group i s thehomomorphic image of an abelian 

group for which the c i r c u l a r re la t ions a r e defining re la t ions , so we will con-

fine our attention to that case . 

Henceforth (G, +) will denote an abelian group with g e n e r a t o r s x1? x2, 

• • • , x and defining re la t ions* n & 

(1) x. + x . + 1 = x . + 2 , i = 1, 2, - • • , n . 

whe re addition of subsc r ip t s i s modulo n. 

Supported in p a r t by NSF grant Number GP-4473. 
*G i s i somorphic to F / N , w h e r e F i s the f ree abelian group on n g e n e r a t o r s 

t j , t2, • • • , t n and N i s the subgroup genera ted by all e lements of the form 

t. + t . , , - t . , , under the cor respondence x.<->t. + N„ This means is imply 
I i + i 1+2 ^ „ 1 1 *- J 

that all r e la t ions in G a r e consequences of the given re la t ions (1). 
36 
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The o r d e r s of the cycl ic summands of G turn out to be var ious Fibonacci 

and Lucas n u m b e r s . We denote by F (respect ively, L ) the m F i b -

onacci (Lucas) number , with the usual ini t ial conditions F 0 = 0, L0 = 2, F* 

= Li = 1. Then the r e s u l t s to be proved below m a y b e summar i zed as follows: 

T h e o r e m 1. If 4jn, then G is the d i r ec t sum of two cyclic subgroups, 

one of o r d e r F , . the o ther of o r d e r 5 F , . 
n/2 n/2 

Theo rem 2. If 2|n and 4 | n , then G is the d i rec t sum of two cyclic 

subgroups, each of o r d e r L / . 

T h e o r e m 3. If 2 | n and 3Jn, then G is the d i rec t sum of two cyclic 

subgroups, one of o r d e r 2, and the other of o r d e r j L . 
T h e o r e m 4. If (n, 6) = 1, then G i s cyclic of o r d e r L . 
Note that the d i rec t sum of cyclic groups of o r d e r s k and m i s i tself 

cycl ic of o r d e r km if and only if (k, m) = 1. It follows that the only cyclic 

group included among the f i r s t t h r e e c a s e s is that for n = 45 s ince F 2 = 1 

(see (10) below). The f i r s t eight c a se s in which G is cyclic a r e those for 

which n = 4, 5, 7, 11, 13, 17, 19, 23, and the cor responding o r d e r s a r e 

5, 11 , 29, 199, 521, 3571, 9349, 64079. T h e s e number s a r e all p r i m e except 

the l as t , which is 139 t i m e s 451. Thus , the s ma l l e s t cyclic group G in our 

l i s t whose o r d e r is composi te is the one for n = 23. 

We a lso obse rve that every Fibonacci number with even subscr ip t appears 

among the cyclic summands in Theorem 1, Given any in teger m > 2, m d i -

v ides F, , whe re k is the per iod of the Fibonacci sequence modulo m, and 

k is even [ 5, Coro l l a ry to T h e o r e m 1 and T h e o r e m 4 ] . Hence a cyclic group 

of o r d e r m is ahomomorph ic Image of at l ea s t one of the groups l i s ted above,, 

F o r m = 2, we can take one of the groups of T h e o r e m 3„ 
Coro l la ry . Every finite cycl ic group is n - c i r c u l a r l y genera ted for some 

n„ 

28 SOME FIBONACCI AND LUCAS RELATIONS FOR REFERENCE 

(2) F + F ^ = 3 F 
w m-2 m+2 m 

(3) F ^ - F . = 4 F 
m+3 m-3 m 

(4) F ^ - F , = L ^ 
m+3 m~ I m+i 
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F + F ^ = L J 4 m m+2 m+i 

[Feb, 

(6) 

(7) 

F - F = F + 2F 
Hl+3 HI-2 m+2 Hl- I 

2 F ^ - F = 5F 
m+2 m-3 m 

(8) 

(9) 

3 F _ + F = 2 F _,_ m+3 m m+4 

If 3|ms then 2 |F 
I I T 

(10) 

(11) 

(12) 

If 3|ms 2 | m , then 4 |L 
m 

2F F , + F 2 _,_ = L 2 m + 1 m m - i m+2 j m ^ 

2 F m+2 F m+i " Fm~~i " L2m+i 

Relat ions (2) — (10) a r e easys and for the mos t p a r t weIl-knowns c o n s e -

quences of the definitions® Relat ions (11) and (12) m a y b e new; the i r proofs a r e 

left a s e x e r c i s e s for the reader. 

3e A REDUCTION OF THE PROBLEM BY MATRICES 

The defining re la t ions for G may be wri t ten in ma t r i x form: 

AxL = 0 , 

w h e r e x = ( x 1 ? x 2 , « " , x n ) and 

A 

1 1 
0 1 

o . . . 
- 1 0 

- 1 0 • • • 
i _ i o . . . 

O i l 
0 1 

0 
0 

- 1 
1 

-1 0 0 

The re la t ion ma t r i x A can be reduced via e l ementa ry row and column o p e r a -

t ions (over the in tegers) to a form from which one can r ead off the s t r u c t u r e of 

G as a d i rec t sum of cyclic groups [ 3 5 4 ] 0 Rather than apply the s tandard p r o -

cedure for th is s we make some observa t ions about the m a t r i x A« B y adding 
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suitable multiples of each of the first n - 2 rows to the last two rows? we can 
reduce A to a matrix of the form 

B 
(13) 

a b 
c d 

where B is the (n - 2) by n matrix consisting of the first n - 2 rows of A0 

In this forms it is clear that G is generated by x and x subject to the 
relations 

<i4) (c X T ) = 0, 

and that an expression for each of the other x?s in terms of these two can be 
read off from the matrix (13): 

x = x - x ,, x ft = x , - x t> = 2x , - x § n-2 n n-l n-3 n-i n-2 n-i n 

etc. ThuSg it suffices to determine the integers a, b, c, d and the structure 
of an abelian group with relations (14). Observe that row operations involving 
the first n - 4 rows of A do not affect the last two columns,, 

Lemma la After reducing the first k columns of A to zero below the 
diagonal (0 < k < n - 4 , the last two rows of A have the form: 

° - ° (~vk+\+i <-1)kFk 
^L__iL 1 -U *k + 2 I u *k+1 

The proof is by induction on k* Simple induction proofs of this sort will 
be omitted0 

In particulars after n - 4 column reductions, the last four rows and 
columns of (the new) A have the form: 
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1 
0 

<~l)n + 1 F 
n -3 

( - l ) n F 
n-2 

1 

1 

V̂* 
M)n+1F , 

- 1 

1 

1 

0 

0 

- 1 

1 

1 
n - 3 

[Feb. 

L e m m a 2, After n - 2 column reduct ions , A i s reduced to the form 

(13), w h e r e a = d = 1 + ( - l ) n + 1 F , b = 1 + ( - l ) n F n _ 2 , and c = ( - l ) n F . 

Proofo Use the obvious row opera t ions to reduce the f i r s t and second 

columns of (15) to z e ro below the diagonal, 

F o r each of the c a s e s in T h e o r e m s 1-4, we will u s e e l emen ta ry row 

opera t ions to reduce the m a t r i x of (14) to one of the forms 

(16) / p 0 \ / k r r \ 
\kr r j ' ^ p 0 J 

w h e r e p , r , k a r e integers,, Then it i s c l e a r that G i s the d i r ec t sum of the 

cyclic groups genera ted by x and x kx i i - i* and that these have o r d e r s 

jpl and j r j , respectively* In pa r t i cu l a r , G i s cyclic when r = 1, 

4, THE STRUCTURE OF G FOR EVEN n 

Henceforth we will wr i t e each re la t ion involving x j and x by wri t ing 
& n - l n J to 

only the two coefficients„ Thus , we have reduced the p rob lem to the p a i r of 

defining re la t ions (with the o r d e r r e v e r s e d from that given above): 

R 1 

R 2 

( - I F F . n 

1 + ( - l ) n + 1 F n - i ' 

1 + ( - l ) n + 1 F 
n - i 

1 + (-1)11 F 
n - 2 

F o r each k > 2, define the re la t ion Rk to be the sum of the re la t ions 
R(k - 1) and R(k - 2). Then one ver i f ies by induction the genera l form 

Rk • k - i 
( _ l ) * - k - i F 

n-k+i 
( _ l ) n " k F 1 ° 

n-k 
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Clearly, any two consecutive ones of these relations are defining relations for 
G. 

First , suppose that n = 4q, and let m = 2q. Then we have the defining 
relations 

R(m - 2 ) F - F ^ , F + F -
m-3 m+3 m-2 m+2 

R(m - 1 ) F + F ^o , F + F ^ 
m-2 m+2 m-i m+l 

Using (2) and (3), we rewrite these as 

R ( m - 2 ) -4F , 3F 
m m 

R ( m - l ) 3F , -F 
m m 

Add 3 times R(m - 1) to R(m - 2), and we have the relation matrix 

3 F - F 
m 

5 F 
m 

r) 
in the form (16), which completes the proof of Theorem 1„ 

Now suppose n = 4q + 2, and again let m = 2q0 Referring again to the 
general form for the relation Rk, we have defining relations 

R m F
m - i " F

m + 3 • F
m

 + F m + 2 

Rtm + 1) r
m

 + F
m + 2 • F m + i - F m + 1 

Using (4) and (5), we have the relation matrix 

-L ^ L m+i 
L m + i 

'm+i J 
0 / 

in the form (16), which completes the proof of Theorem 2, 

5, THE STRUCTURE OF G FOR ODD n 

The proofs of Theorems 3 and 4 appear to require separate consideration 
of six cases, depending on the congruence class of n modulo 128 
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Case L Let n = 12q + 1 and m = 6q„ Refe r r ing again to Rk in the 

prev ious sect ion, we have the defining re la t ions 

R(m - 1 ) F ™ F ^ 5 F + F _ L 
x m-2 m+3 m - i m+2 

R m F + F ^ 3 F - F ^„ . 
m - i m+2 m m+i 

Use (3) and (6) to r e w r i t e these a s 

R ( m - 1) - 2 F , - F J _ , 5 F , + F J 
m - i m+2 m - i m-4 

Rm F 4 + F , _ , - F , 
m - i m+2 m - i 

We ignore the re la t ions Rk for k > m and define R(m + 1) by adding 5 t i m e s 

Rm to R(m - 1): 

R(m + 1) ' 3 F + 4 F ,o , F A . 
v m - i m+2 m-4 

F o r k > 1, define R(m + k) by adding 4 t i m e s R(m + k - 1) to R(m + k - 2). 
One obtains by induction (using (3)) the genera l fo rm: 

k+i R(m + k) ^3^+1,Fm_j + iF3^+3Fm+2s (-1) F m _ 3 k - l . 

In par t icu la rs for k = 2q - 2 and 2q - 1, we have the defining re la t ions 

R ( 8 q - 2) F F + 4 - F F , . - 5 
H m-5 m - i 4 m-3 m+2 

R(8q - 1) F F + | F F ± , 1 
x H m-2 m - i L m m+2 

Add 5 t i m e s R(8q - 1) to R(8q - 2) to get a m a t r i x of the form (16) with r = 

10 Hence G i s cyclic of order, 

(F + 5 F )F + 4 (F + 5F )F ^ 
m-5 m-2 m - i ^ m-3 m m+2 

2 F F + F 2 ^ 
m m - i m+2 

= L. 2m+i 

= L . n 
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(Formulas (7) and (11) w e r e used here*) 

Case IL Let n = 12q + 5 and m = 6q + 2* This l eads to the s a m e equa-

t ions R(m - 1)5 Rm, and R(m + k) as in Case L In p a r t i c u l a r for k = 2q 

- 1 and 2qa we have 

R(8q + 1) F F + f F F ^ , 3 
^ m-4 m - i c m-2 m+2 

R(8q + 2) F 2 + 4 - F ^ F v , - 1 
H m-i L m+i m+2 

As in Case I, this l eads to a cyclic group whose o r d e r (using (8) and (11)) i s 

(F + 3 F )F + + ( F + 3 F , J F 
m-4 m - i m - l * m-2 m+l m+2 

= 2 F F + F 2 ^ 
m - 1 m m+2 

= L-2m+i 

= L . 
• n 

Case EL Let n = 12q - 5 and m = 6q - 39 F r o m the genera l form Rk 

we have re la t ions 

R m F m - l " F m + 2 > F m+2 

R < m + 1> F m + 2 ' F m - ! ' 

F o r k > 1, R(m + k) is defined to be R(m + k - 2) minus four t i m e s R(m ^ 

k - 1)0 Using (3) and induction on ks we have 

R(m + k) B L F 3 k ^ F I I 1 - i + (» l ) k + 1 F 3 l^ lFm+2 , F m „ 3 k + 2 

In pa r t i cu l a r , for k = 2q - 2 and 2q - 1 , we have 

R(8q - 5) 4-F F - F " F ^ , 5 
^ * • m-6 m - i m-4 m+2 

R(8q - 4) 4 V 3 F m - i + V l F m » 2 » 1 • 
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Again G is cyclic, and the order L is computed as in Case I, using (12) in-
stead of (11). 

Case IV. Let n = 12q - 1 and m = 6q - 1. Then relations Rm, R(m 
+ 1), and R(m + k) are as in Case in. For k = 2q - 1 and 2q we have 

R(8q-2) -4-F F + F F . 3 
^ ^ m-5 m-i m-3 m+2 

R(8q - 1) 4- F F + F F , , 1 . 
^ ^ m-2 m-i m m+2 

Again G is cyclic of order L , using (8) and (12) as in the previous cases. 
This completes the proof of Theorem 4. 

Case V. Let n = 12q + 3 and m = 6q + 1* The relations Rm, R(m + 
1), and R(m + k) are the same as in Case HI. For k = 2q and 2q + 1, we 
have 

R(8q - 1 ) • 4 F F ^ - F F ^ , 2 

R(8q + 2) - f F2 + F "F ^ , 0 . 

By (9), the first entry in R(8q + 1) is even, hence we have a matrix of the form 
(16) and G is the direct sum of two cyclic groups, one of order 2, the other 
(by (1$ of order £ L 2 m + 1 = { Ln . 

Case VI. Let n = 12q - 3 and m - 6q - 2* Then we have the same 
relations as in Case I. For k = 2q - 2 and 2q - 1, we have 

R(8q - 4) F F + j F F _̂ , -2 
x ^ m_3 m-i L m-i m+2 

R(8q - 3) F F , + | F 
^ m m-i l 

2 
m * m-i z * m+2 

As in Case V, this leads to the direct sum of a cyclic group of order 2 and 
one of order £ L , which completes the proof of Theorem 3, 
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6, A FURTHER CONSEQUENCE 

It is easy to verify that the second entries in each of the relations appear-
ing in each reduction process above are, except for sign, the remainders in 
the Euclidean Algorithm, applied to the two entries of relation Rl . Thus the 
smallest non-zero entry appearing is their greatest common divisor,, 

Corollary, If n is even, then 

(F , F~ - 1) x n n-l 

If n is odd, then 

(F , F +1) = { *' " u r . 
x n n-l J 1, otherwise „ 
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