A THEOREM ON POWER SUMS

STEPHEN R. CAVIOR
State University of New York at Buffalo

Allison [1, p. 272] showed that the identity
(1)

$$
\left\{\sum_{x=1}^{n} x^{r}\right\}^{p}=\left\{\sum_{x=1}^{n} x^{s}\right\}^{q} \quad(n=1,2,3, \cdots)
$$

holds if and only if $r=1, p=2, s=3$, and $q=1$. In this paper we consider the more general problem of finding polynomials

$$
f(x)=\sum_{i=0}^{r} a_{i} x^{i} \quad \text { and } \quad g(x)=\sum_{i=0}^{s} b_{i} x^{i}
$$

over the real field which satisfy

$$
\begin{equation*}
\{\mathrm{f}(1)+\cdots+\mathrm{f}(\mathrm{n})\}^{\mathrm{p}}=\{\mathrm{g}(1)+\cdots+\mathrm{g}(\mathrm{n})\}^{q} \quad(\mathrm{n}=1,2,3, \cdots), \tag{2}
\end{equation*}
$$

where r, p, s and q are positive integers.
First we note that

$$
\sum_{x=1}^{n} f(x)=\sum_{i=0}^{r} a_{i} S_{i}
$$

where

$$
S_{k}=\sum_{x=1}^{n} x^{k}, \quad k=0,1,2, \cdots
$$

Thus the left member of (2) becomes
(Received February 1967) 15\%

$$
\left\{a_{r} \frac{n^{r+1}}{r+1}+\cdots\right\}^{p}
$$

since S_{r} is a polynomial in n having degree $\mathrm{r}+1$ and leading coefficient

$$
\frac{1}{r+1}
$$

Similarly the right member of (2) becomes

$$
\left\{b_{s} \frac{n^{s+1}}{s+1}+\cdots\right\}^{q}
$$

so (2) can be written

$$
\begin{equation*}
\left\{a_{r} \frac{n^{r+1}}{r+1}+\cdots\right\}^{p}=\left\{b_{s} \frac{n^{s+1}}{s+1}+\cdots\right\}^{q} \tag{3}
\end{equation*}
$$

For (3) to hold we must have

$$
\begin{equation*}
(r+1) p=(s+1) q \tag{4}
\end{equation*}
$$

and
(5)

$$
\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{r}+1}\right)^{\mathrm{p}}=\left(\frac{\mathrm{b}_{\mathrm{s}}}{\mathrm{~s}+1}\right)^{\mathrm{q}}
$$

Case 1. Suppose $p=q$. From (2) we find $f(n)=g(n), n=1,2,3, \cdots$, so $f(x)=g(x)$.

Case 2. Suppose $p \neq q$. We may assume without loss of generality that $\mathrm{p}>\mathrm{q}$ and $(\mathrm{p}, \mathrm{q})=1$. We will also assume that $\mathrm{a}_{\mathrm{r}}=\mathrm{b}_{\mathrm{S}}=1$. Following Allison [op. cit.] we see that for (3) to hold we must have $r=1, p=2$, s $=3$, and $q=1$. Specifically,
(6)

$$
\left(S_{1}+a_{0} S_{0}\right)^{2}=S_{3}+b_{2} S_{2}+b_{1} S_{1}+b_{0} S_{0}
$$

Using well-known formulas for $\mathrm{S}_{\mathrm{k}}, \mathrm{k}=0,1,2,3$, we write (6) as

$$
\begin{equation*}
\left\{\frac{n(n+1)}{2}+a_{0} n\right\}^{2}=\left\{\frac{n(n+1)}{2}\right\}^{2}+b_{2}\left\{\frac{n(n+1)(2 n+1)}{6}\right\}+b_{1} \frac{n(n+1)}{2}+b_{0} n_{0} \tag{7}
\end{equation*}
$$

Rewriting (7) in powers of n, we find

$$
\frac{\mathrm{n}^{4}}{4}+\left(\frac{1}{2}+\mathrm{a}_{0}\right) \mathrm{n}^{3}+\left(\frac{1}{2}+\mathrm{a}_{1}\right)^{2} \mathrm{n}^{2}=\frac{\mathrm{n}^{4}}{4}+\left(\frac{1}{2}+\frac{\mathrm{b}_{2}}{3}\right) \mathrm{n}^{3}
$$

$$
\begin{equation*}
+\left(\frac{1}{4}+\frac{b_{2}}{2}+\frac{b_{1}}{2}\right) n^{2}+\left(\frac{b_{2}}{6}+\frac{b_{1}}{6}+b_{0}\right) n \tag{8}
\end{equation*}
$$

Equating coefficients in (8) yields
(9)

$$
\begin{aligned}
a_{0} & =\frac{b_{2}}{3} \\
\left(\frac{1}{2}+a_{0}\right)^{2} & =\frac{1}{4}+\frac{b_{2}}{2}+\frac{b_{1}}{2} \\
0 & =\frac{b_{2}}{6}+\frac{b_{1}}{2}+b_{0}
\end{aligned}
$$

Let a_{0} be arbitrary and regard (9) as the linear system

$$
\begin{equation*}
\sum_{j=0}^{2} a_{i j} b_{j}=c_{i} \quad(i=0,1,2) \tag{10}
\end{equation*}
$$

Since the determinant $\left|a_{i j}\right| \neq 0$, we can solve for b_{0}, b_{1}, b_{2} in terms of a_{0}. Easy calculations show

$$
\begin{equation*}
b_{0}=-a^{2}, \quad b_{1}=2 a^{2}-a, \quad b_{2}=3 a \tag{11}
\end{equation*}
$$

[Apr.
where a_{0} is replaced by a for simplicity. Thus

$$
\begin{equation*}
f(x)=x+a, \quad g(x)=x^{3}+3 a x^{2}+\left(2 a^{2}-a\right) x-a^{2} \tag{12}
\end{equation*}
$$

When $\mathrm{a}=0$, (12) yields the result of Allison.
If we do not require $a_{r}=b_{S}=1$, it is interesting to note that for arbitrary p, q one can always find non-monic polynomials $f(x), g(x)$ to satisfy (2). Specifically $f(x)$ and $g(x)$ are chosen to satisfy

$$
\begin{equation*}
\sum_{x=1}^{n} g(x)=n^{q}, \sum_{x=1}^{n} g(x)=n^{p} \tag{13}
\end{equation*}
$$

If (13) holds, obviously (2) does.
In general the construction of a function $f_{t}(x)$ satisfying

$$
\begin{equation*}
\Sigma f_{t}(x)=n^{t} \quad(t=1,2,3, \cdots) \tag{14}
\end{equation*}
$$

is recursive. First note that $f_{1}(x)=1$. We find $f_{t+1}(x)$ as follows. Recall that

$$
\sum_{x=1}^{n} x^{t}=\frac{n^{t+1}}{t+1}+s_{t^{n}} n^{t}+\cdots+s_{1} n
$$

Thus

$$
(t+1) \sum_{x=1}^{n}\left\{x^{t}-s_{t} f_{t}(x)-\cdots-s_{1} f_{1}(x)\right\}=n^{t+1}
$$

so

$$
\begin{equation*}
f_{t+1}(x)=(t+1)\left\{x^{t}-\sum_{k=1}^{t} s_{k} f_{k}(x)\right\} \tag{16}
\end{equation*}
$$

We summarize these results in the following.
Theorem. The solutions of (2) are as follows. If $p=q, f(x)$ is arbitrary and $g(x)=f(x)$. If $p \neq q$, the only monic solutions occur when $p=2$ and $q=1$, in which case $f(x)$ and $g(x)$ are defined by (12), where a is an arbitrary real constant. Non-monic solutions for that case can be found using (13).

As an example of these results suppose that $p=3$ and $q=4 . \quad$ By (14) and (17) we have

$$
\left\{\sum_{x=1}^{n}\left(4 x^{3}-6 x^{2}+4 x-1\right)\right\}^{3}=\left\{\sum_{x=1}^{n}\left(3 x^{2}-3 x+1\right)\right\}^{4}, \quad(n=1,2,3, \cdots)
$$

REFERENCE

1. Allison, "A Note on Sums of Powers of Integers," American Mathematical Monthly, Vol. 68, 1961, p. 272.

A NUMBER PROBLEM

J. Wlodarski

Porz-Westhoven, Federal Republic of Germany
There are infinite many numbers with the property: if units digit of a positive integer, M, is 6 and this is taken from its place and put on the left of the remaining digits of M , then a new integer, N , will be formed, such that $\mathrm{N}=6 \mathrm{M}$. The smallest M for which this is possible is a number with 58 digits (1016949 • . 677966).

Solution: Using formula

$$
\frac{6 x}{1-4 x-x^{2}}=3 \sum_{n=0}^{\infty} F_{3 n} x^{n}
$$

with $\mathrm{x}=0,1$ we have $1,01016949 \cdots 677966$, where the period number (behind the first zero) is $\mathrm{M}^{\text {. }}$
問 016949152542372881355932203389830508474576271186440677966. (Continued on p. 175.)

