ON A CERTAIN INTEGER ASSOCIATED WITH A GENERALIZED FIBONACCI SEQUENCE

T. W. CUSICK ${ }^{\star}$

University of Illinois, Urbana, Illinois; Churchill College, Cambridge, England

1. INTRODUCTION

A generalized Fibonacci sequence maybe defined by specifying two relatively prime integers and applying the formula

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}}=\mathrm{py} \mathrm{n}_{\mathrm{n}-1}+\mathrm{y}_{\mathrm{n}-2}, \tag{1}
\end{equation*}
$$

where p is a fixed positive integer ($p=1$ gives a Fibonacci sequence).
If y_{0} is the smallest non-negative term determined by (1), then $y_{1} \geqq$ $(p+1) y_{0}$ with strict inequality for $y_{0}>1$ except in the case $y_{0}=y_{1}=1$. In order to avoid trivial exceptions to various statements below, we assume with no real loss of generality that $y_{1}>y_{0}>0$ in all that follows.

It has been shown in [1] that the Fibonacci sequences can be ordered using the quantity $y_{1}^{2}-y_{0} y_{1}-y_{0}^{2}$. Similarly, the generalized Fibonacci sequences defined in (1) may be ordered using the quantity D defined by

$$
\mathrm{D}=\mathrm{y}_{1}^{2}-\mathrm{py}_{0} \mathrm{y}_{1}-\mathrm{y}_{0}^{2}
$$

It may be of interest to determine for given p the possible values of D and how many generalized Fibonacci sequences can be associated with a given value of D.

We solve completely the cases $\mathrm{p}=1,2$ which, as will be seen, are essentially simpler than the cases $p \geq 3$. Our proofs make use of the classical theory of binary quadratic forms of positive discriminant

$$
\mathrm{d}=\mathrm{p}^{2}+\mathrm{r} .
$$

A good treatment of this subject is found in [2], which we refer to frequently as a source of the proofs of well-known results.
${ }^{\star}$ Research Student
(Received December 1965)

Let S_{p} be the set of positive integers D such that the congruence

$$
\mathrm{n}^{2} \equiv \mathrm{~d} \bmod 4 \mathrm{D}
$$

has solutions for n. We prove the following:
Theorem 1. For $\mathrm{p}=1,2, \mathrm{~S}_{\mathrm{p}}$ is the set of possible values of the integer $D=y_{1}^{2}-p y_{0} y_{1}-y_{0}^{2}$ associated with the generalized Fibonacci sequence defined by (1).

Theorem 2. For $p=1,2$, let r be the number of distinct odd primes dividing $4 \mathrm{D} /(\mathrm{d}, 4 \mathrm{D})$. Then except for the trivial case $\mathrm{p}=\mathrm{D}=2$ there are 2^{r+1-p} distinct pairs y_{0}, y_{1} such that $D=y_{1}^{2}-p_{0} y_{1}-y_{0}^{2}$ and y_{0}, y_{1} generate a generalized Fibonacci sequence defined by (1), i. e., there are $2^{\mathrm{r}+1-\mathrm{p}}$ distinct sequences associated with the given value of D.

The case $p=1$ of Theorem 1 has been previously proved in [3].
2. REMARKS FOR THE CASE OF GENERAL p

Our problem is to determine all positive integers D which are properly represented (i. $\mathrm{e}_{.}$, are represented with x and y relatively prime) by the form

$$
\mathrm{Q}=\mathrm{x}^{2}-\mathrm{pxy}-\mathrm{y}^{2}
$$

with the restriction that

$$
\begin{equation*}
x \geq(p+1) y \geq 0 \tag{2}
\end{equation*}
$$

We denote the quadratic form $a x^{2}+b x y+c y^{2}$ by (a, b, c)。 We say the ordered pair $(\mathrm{x}, \mathrm{y})=(\alpha, \gamma)$ is a proper representation of m by $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ if α and \boldsymbol{y} are relatively prime and $a \alpha^{2}+\mathrm{b} \alpha \gamma+\mathrm{c} \gamma^{2}=m$ 。

Lemma 1. Let (α, γ) be a proper representation of the positive integer D by the integral form ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of discriminant d . Then there exist unique integers $\beta, \delta, \mathrm{n}$ satisfying

$$
\begin{align*}
& \alpha \delta-\beta \gamma=1 \\
& 0 \leq \mathrm{n}<2 \mathrm{D} \tag{3}
\end{align*}
$$

$$
\mathrm{n}^{2} \equiv \mathrm{~d} \bmod 4 \mathrm{D}
$$

and such that the transformation

$$
\begin{align*}
& \mathrm{x}=\alpha \mathrm{x}^{\prime}+\beta \mathrm{y}^{\prime} \tag{5}\\
& \mathrm{y}=\gamma_{\mathrm{x}^{\prime}}+\delta \mathrm{y}^{\prime}
\end{align*}
$$

replaces（ a, b, c ）by the equivalent form（ D, n, k ）in which k is determined by

$$
\mathrm{n}^{2}-4 \mathrm{Dk}=\mathrm{d}
$$

Proof．This is a classical result（［2，p．74，Th．58］）．
Corollary． Q properly represents a positive integer D only if D be－ longs to the set S_{p} 。

Following［2， $\mathrm{p}, 74$ ］we call a root n of（4）which satisfies（3）a mini－ mum root．Since n is a root of（4）if and only if $n+2 D$ is also a root，the number of minimum roots is half the total number of roots．By Lemma 1，a proper representation of D by a form (a, b, c) is associated with a unique minimum root of（4）

Lemma 2．Every automorph（5）of the integral form（ $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ）of dis－ criminant d ，where a, b, c have no common divisor 1 ，has

$$
\begin{equation*}
\alpha=\frac{1}{2}(\mathrm{u}-\mathrm{bv}) \quad \beta=-\mathrm{cv} \quad \gamma=\mathrm{av} \quad \delta=\frac{1}{2}(\mathrm{u}+\mathrm{bv}), \tag{6}
\end{equation*}
$$

where u and v are integral solutions of

$$
\begin{equation*}
u^{2}-d v^{2}=4 \tag{7}
\end{equation*}
$$

Conversely，if u and v are integral solutions of（7），the numbers（6） are integers and define an automorph．

Proof．This is a classical result（［2，p．112，Th．87］）。
Lemma 3。 For given D in S_{p} ，there is associated with a given mini－ mum root n of（4）at most one proper representation of D by（ $1,-p,-1$ ）， which satisfies（2）．

Proof. Let (α, γ) be a proper representation of D by $(1,-p,-1)$ satisfying (2) and associated with the minimum root n of (4). For the given D and n , it is clear that any proper representation $\left(\alpha^{\prime}, \gamma^{\prime}\right)$ of D by ($1,-\mathrm{p},-1$) is the first column of a matrix

$$
\mathrm{A}\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right]
$$

where A is the matrix of some automorph of $(1,-p,-1)$. Thus it is enough to show that $\left(\alpha^{\prime}, \gamma^{\prime}\right)$ does not satisfy (2) unless A is the identity matrix.

Since the smallest positive solution of the equation (7) is obviously (u, v) $=\left(p^{2}+2, p\right)$, it follows from Lemma 2 that every automorph of $(1,-p,-1)$ is of the form

$$
A=\left[\begin{array}{ll}
p^{2}+1 & p \\
p & 1
\end{array}\right]^{m} \cdot\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]^{j} \begin{aligned}
j & =1 \text { or } 2 \\
m & =0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

We need only consider non-negative m , because for negative $\mathrm{m}\left(\alpha^{\prime}\right.$, γ) clearly has components of opposite sign. Obviously ($\alpha^{\prime}, \gamma^{\prime}$) does not satisfy (2) for $\mathrm{j}=1$ and any $\mathrm{m} \geq 0$. For $\mathrm{j}=2, \mathrm{~m}=0$, $\left(\alpha^{\prime}, \gamma^{\prime}\right)=(\alpha, \gamma)$ satisfies (2) by hypothesis; but this is false for $\mathrm{j}=2, \mathrm{~m}=1$ because

$$
(p+1)(p \alpha+\gamma) \geq\left(p^{2}+1\right) \alpha+p \gamma
$$

Then by induction $\left(\alpha^{\prime}, \gamma^{\prime}\right)$ does not satisfy (2) for $j=2$ and any $m \geq 1$. This proves the lemma.

$$
\text { 3. CASE } \mathrm{p}=1 \text { OF THEOREM } 1
$$

Lemma 4. S_{1} is made up of

1. The integers 1 and 5
2. all primes $\equiv 1$ or $9 \bmod 10$
3. all products of the above integers $\not \equiv 0 \bmod 25$.

Proof. By definition, S_{1} is the set of positive integers D such that the congruence

$$
\begin{equation*}
\mathrm{n}^{2} \equiv 5 \bmod 4 \mathrm{D} \tag{8}
\end{equation*}
$$

has solutions for n. Thus we must have $D \not \equiv 0 \bmod 25$ and D odd, since

$$
\left(\frac{5}{8}\right)=-1
$$

So it is enough to show that (8) is soluble for odd prime D if and only if $D=$ 5 , or $\mathrm{D} \equiv 1$ or $9 \bmod 10$.

By the definition of the Legendre symbol, (8) is soluble for odd prime D if and only if

$$
\left(\frac{5}{\mathrm{D}}\right)=1 .
$$

But then by quadratic reciprocity and the fact that D is odd

$$
\left(\frac{5}{D}\right)=\left(\frac{D}{5}\right)=\left\{\begin{array}{l}
1 \text { if } D \equiv 1 \text { or } 4 \bmod 5 \\
-1 \text { if } D \equiv 2 \text { or } 3 \bmod 5
\end{array}\right.
$$

which implies the desired result.
Lemma 5. If D belongs to S_{1}, then ($1,-1,-1$) properly represents D. Further, associated with each minimum root of (8) there is at least one proper representation satisfying (2) with $p=1$.

Proof. We consider each of the minimum roots of (8). Let (α, γ) be a proper representation of D by $(1,-1,-1)$ associated with a given minimum root n .

We may suppose $\alpha>0, \quad \gamma>0$. For if $\alpha<0, \quad \gamma<0$, we consider $(-\alpha,-\gamma)$. If one and only one of α, γ is negative we may suppose it is α. Then we apply the automorph

$$
\begin{align*}
& x^{\prime}=2 x+y \tag{9}\\
& y^{\prime}=x+y
\end{align*}
$$

of $(1,-1,-1)$ successively to (α, γ), getting the sequence

$$
(\alpha, \gamma),(2 \alpha+\gamma, \alpha+\gamma), \cdots, \quad\left(\mathrm{f}_{2 \mathrm{~m}+1} \alpha-\mathrm{f}_{2 \mathrm{~m}} \gamma, \mathrm{f}_{2 \mathrm{~m}} \alpha+\mathrm{f}_{2 \mathrm{~m}-1} \gamma\right), \cdots
$$

where f_{i} is the $i^{\text {th }}$ member of the Fibonacci sequence $1,1,2,3,5, \ldots$, If for some m we have

$$
\begin{equation*}
\mathrm{f}_{2 \mathrm{~m}}|\alpha|>\mathrm{f}_{2 \mathrm{~m}-1} \gamma, \tag{10}
\end{equation*}
$$

then

$$
\left(-f_{2 m+1} \alpha-f_{2 m} \gamma,-f_{2 m}{ }^{\alpha}-f_{2 m-1} \gamma\right)
$$

is a proper representation with both members positive, as desired. But (10) must be true for some m because $\gamma=\mathrm{k}|\alpha|$ for some rational $\mathrm{k}>0$ and

$$
\alpha^{2}-\alpha \gamma-\gamma^{2}>0
$$

implies

$$
\mathrm{k}<(1+\sqrt{5) / 2} ;
$$

whereas from the continued fraction expansion of $(1+\sqrt{5}) / 2$ we have

$$
1<\frac{3}{2}<\frac{8}{5}<\cdots<\frac{\mathrm{f}_{2 m}}{\mathrm{f}_{2 m-1}}<\cdots<\frac{1+\sqrt{5}}{2}
$$

and

$$
\lim _{m \rightarrow \infty} \frac{f_{2 m}}{\mathrm{f}_{2 m-1}}=\frac{1+\sqrt{5}}{2}
$$

Given a proper representation (α, γ) with both members positive, we apply the inverse of the transformation (9) successively, getting the sequence

$$
\begin{aligned}
& (\alpha, \gamma), \quad(\alpha-\gamma,-\alpha+2 \gamma), \cdots, \\
& \left(f_{2 m-1} \alpha-f_{2 m} \gamma,-f_{2 m} \alpha+f_{2 m+1} \gamma\right), \cdots
\end{aligned}
$$

Since the successive first members make up a decreasing sequence of positive integers so long as the corresponding second members are positive, we must reach an m such that

$$
\mathrm{f}_{2 \mathrm{~m}+1} \gamma>\mathrm{f}_{2 \mathrm{~m}} \alpha \text { and } \mathrm{f}_{2 \mathrm{~m}+3} \gamma<\mathrm{f}_{2 \mathrm{~m}+2} \alpha
$$

Then

$$
\left(f_{2 m+1} \alpha-f_{2 m^{\gamma}},-f_{2 m^{\alpha}}+f_{2 m+1} \gamma\right)
$$

is a proper representation satisfying (2) with $p=1$.
All transformations used above of course have determinant 1, so that the minimum root n associated with the originally given proper representation is not changed.

4. CASE $\mathrm{p}=2$ OF THEOREM 1

Lemma 6. S_{2} is made up of

1. the integers 1 and 2
2. all primes $\equiv 1$ or $7 \bmod 8$
3. all products of the above integers $\not \equiv 0 \bmod 4$.

Proof. By definition, S_{2} is the set of positive integers D such that the congruence

$$
\begin{equation*}
\mathrm{n}^{2} \equiv 8 \bmod 4 \mathrm{D} \tag{11}
\end{equation*}
$$

has solutions for n. Thus we must have $D \not \equiv 0 \bmod 4$. Then the result follows from the fact that for odd prime D

$$
\left(\frac{2}{D}\right)=\left\{\begin{array}{l}
1 \text { if } D \equiv 1 \text { or } 7 \bmod 8 \\
-1 \text { if } D \equiv 3 \text { or } 5 \bmod 8
\end{array}\right.
$$

Lemma 7. If D belongs to S_{2}, then $(1,-2,-1)$ properly represents D. Further, associated with exactly half of the total number of minimum roots of (11) there is at least one proper representation satisfying (2) with $p=2$ 。

Proof. We consider each of the minimum roots of (11). Let (α, γ) be a proper representation of D by $(1,-2,-1)$ associated with a given minimum root n.

We argue as in Lemma 5 that we may suppose $\alpha<0, \gamma<0$. For if $\alpha<0, \gamma<0$ we consider $(-\alpha,-\gamma)$. If one and only one of α, γ is negative, we may suppose it is α. Then we apply the automorph

$$
\begin{align*}
& \mathrm{x}^{\prime}=5 \mathrm{x}+2 \mathrm{y} \\
& \mathrm{y}^{\prime}=2 \mathrm{x}+\mathrm{y} \tag{12}
\end{align*}
$$

of $(1,-2,-1)$ successively to (α, γ), getting the sequence

$$
\begin{aligned}
& (\alpha, \gamma), \quad(5 \alpha+2 \gamma, \quad 2 \alpha+\gamma), \cdots, \\
& \left(\mathrm{g}_{2 \mathrm{~m}+1} \alpha+\mathrm{g}_{2 \mathrm{~m}} \gamma, \quad \mathrm{~g}_{2 \mathrm{~m}} \alpha+\mathrm{g}_{2 \mathrm{~m}-1} \gamma\right), \ldots
\end{aligned}
$$

where g_{i} is the $i^{\text {th }}$ member of the generalized Fibonacci sequence $1,2,5$, $12,29, \ldots$. If for some m we have

```
g2m |\alpha|
```

then

$$
\left(-g_{2 m+1} \alpha-g_{2 m} \gamma,-g_{2 m} a-g_{2 m-1} \gamma\right)
$$

is a proper representation with both members positive. But as in the proof of Lemma 5 a consideration of the continued fraction for $1+\sqrt{2}$ shows that (13) must be true for some m.

Given a proper representation (α, γ) with both members positive, we apply the inverse of the transformation (12) successively, getting the sequence

$$
(\alpha, \gamma), \quad(\alpha-2 \gamma,-2 \alpha+5 \gamma), \cdots, \quad\left(\mathrm{g}_{2 \mathrm{~m}-1} \alpha-\mathrm{g}_{2 \mathrm{~m}} \gamma,-\mathrm{g}_{2 \mathrm{~m}} c+\mathrm{g}_{2 \mathrm{~m}+1} \gamma\right)_{,} \cdots
$$

Since the successive first members make up a decreasing sequence of positive integers so long as the corresponding second members are positive, we must reach an m such that

$$
\mathrm{g}_{2 \mathrm{~m}+1} \gamma>\mathrm{g}_{2 \mathrm{~m}} \boldsymbol{\sigma} \text { and } \mathrm{g}_{2 \mathrm{~m}+3} \gamma<\mathrm{g}_{2 \mathrm{~m}+2} \alpha .
$$

Then

$$
\left(\alpha_{0}, \gamma_{0}\right)=\left(\mathrm{g}_{2 \mathrm{~m}-1} \alpha-\mathrm{g}_{2 \mathrm{~m}} \gamma,-\mathrm{g}_{2 \mathrm{~m}} \alpha+\mathrm{g}_{2 \mathrm{~m}+1} \gamma\right)
$$

satisfies

$$
\alpha_{0}>(5 / 2) \gamma_{0}
$$

and exactly one of $\left(\alpha_{0}, \gamma_{0}\right)$ and

$$
\left(\alpha_{1}, \gamma_{1}\right)=\left(5 \alpha_{0}-12 \gamma_{0}, 2 \alpha_{0}-5 \gamma_{0}\right)
$$

sf tisfies (2) with $p=2$.
The transformation which takes $\left(\alpha_{0}, \gamma_{0}\right)$ to (α_{1}, γ_{1}) has determinant -1 and $\left(\alpha_{0}, \gamma_{0}\right),\left(\alpha_{1}, \gamma_{1}\right)$ are associated with different minimum roots of (11). Thus the last statement of the lemma is easily verified.

5. PROOF OF THEOREM 2

Lemma 8. Let $(c, m)=1$. Then

$$
x^{2} \equiv c \bmod m
$$

has 2^{r+w} roots if it has any roots, where r is the number of distinct odd primes dividing m and w is given by

$$
\mathrm{w}= \begin{cases}0 & \text { if } 4 \text { does not divide } \mathrm{m} \\ 1 & \text { if } 4 \text { but not } 8 \text { divides } \mathrm{m} \\ 2 & \text { if } 8 \text { divides } \mathrm{m}\end{cases}
$$

Proof. This is a well-known result ([2, p. 75, Th. 60]).
For $p=1,2$, let r be the number of distinct odd primes dividing $4 \mathrm{D} /(\mathrm{d}, 4 \mathrm{D})$. It is easy to verify using Lemma 8 that the congruences (8) and (11) have 2^{r+1} roots. Then Theorem 2 follows from Lemmas 3, 5, and 7.

We comment briefly on the reasons for confining detailed discussion above to the cases $p=1,2$.

Let $h(d)$ be the number of distinct non-equivalent reduced forms of discriminant d, We can make little progress if $h(d)>1$, because for such d the problem of determining all positive integers properly represented by $(1,-p,-1)$ even without the restriction (2) is unsolved. We remark that $h(d)=$ 1 for $p=1,2,3,5,7$, but $h(d)=2$ for $p=4,6$.

However, it is not enough simply to confine ourselves to the study of those p for which $\mathrm{h}(\mathrm{d})=1$. We have seen that for $\mathrm{p}=1,2$ the converse of Lemma 1 Corollary is true and for any properly representable D a proper representable D a proper representation satisfying (2) can be found. However, for $p \geq 3$ there exist integers D which are properly represented by (1 , $-p,-1$) but which have no proper representation satisfying (2), and it is not simple to describe the subset of S_{p} composed of such integers.

REFERENCES

1. Brother U. Alfred, "On the Ordering of Fibonacci Sequences," Fibonacci Quarterly, Vol. 1, No. 4 (December 1963), pp. 43-46.
2. L. E. Dickson, Introduction to the Theory of Numbers, New York; Dover Publications, 1957.
3. D. Thoro, "An Application of Unimodular Transformations," Fibonacci Quarterly, Vol. 2, No. 4 (December 1964).
