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1. INTRODUCTION 

Solving equations, where we are required to find only the integral solu-
tions, has some historical interest. These equations are known as Diophantine 
equations, after Diophantus of Alexandria, the first to treat these problems in 
a.n algebraic manner. 

There are innumerable problems that result in first degree equations with 
two unknowns, where it is required to find integral solutions, Such an equation 
is called a linear Diophantine equation and is written as 

(1) ax + by = n . 

It is usually stipulated that the parameters, a, b and n, are also integers. 
However, if these parameters are rational numbers, (1) can be easily t rans-
formed so that each parameter becomes integral. 

Equation (1) is indeterminant in that there is an unlimited number of 
solutions, and if we did not require integral solutions, the problem of finding 
a solution would be simple. If, however, we restr ict the solutions to be inte-
gral, the problem of finding these solutions is no longer simple, and in fact 
there may be no solution. Yet, if a solution does exist, the total number of 
solutions is still unlimited. 

The problem warrants more attention by the added restriction that the 
solutions be non-negative pairs. If this restriction is imposed upon the par-
ameters as well, then if a solution exists, the number of solutions is finite,, 
The problem of finding these solutions and determining the number of such 
solutions has occupied much attention throughout the history of number theory 
[ l , Chap. II] . 

The purpose of this paper is to give an explicit formula for the general 
solution of (1) and to establish the relationship that exists between the param-
eters when no solution exists. 
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29 PRE LIMINARY RE MARKS 

Before developing the relationships above some remarks pertaining to 
historical developments, topical concepts, and the existence of solutions are 
in order, 

Euler proved that Eq. (1) is solvable in integers when (a,b) = 1, L e.., 
they are relatively prime [ 1, p. 47], and Gauss proved that the equivalent of 
(1) is solvable in integers if and only if (a, b)|n [ 1, p. 54]. In view of these 
results and the general conditions imposed on (1), L e e , the solutions and par-
ameters are to be non-negative integers, there is no loss of generality by 
assuming (a, b) = 1„ 

If (XpYi) is a solution of (1) in integers and (a,b) = 1, then all other 
solutions will be given by 

x = xt + bj 
(2) 

y = Yi - aj 

where j is an integer [ 2, p9 29]. 
It is for this first solution that we seek an explicit formula. This can be 

accomplished easily with the Fermat-Euler Theorem applied to the congruence 
ax = n (modb). Such a result has advantages over other methods of solution, 
such as, algorithms involving a succession of recursive steps. The Fermat-
Euler Theorem involves the concept of Euler*s function, denoted <£(b), which 
is equal to the number of natural numbers less than b that are coprime with 
be An explicit formula for this value is given by 

(3) * < b > = b - ( 1 - i ) - ( 1 " i ) - ( 1 - i } 
where Pj, p2, • • • , p r are the different prime factors of the natural number 
b [ 2, p. 24]. The statement of the Fermat-Euler Theorem then becomes 
[3 , p. 63] 

(4) a*(b) = 1 (modb) 
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Assuming that a, b and n are non-negative and (a,b) = 1, then if 
either a or b equals 0 or 1, then the determination of the solution of (1) 
becomes a simple case. Hence, in what follows we assume that both a and b 
are greater than 1. This implies that a £ b, since if a = b, then (a,b) = 
(a, a) = a, but (a,b) = 1, hence a = b = 1, a contradiction. 

As a final remark we might consider the graphical representation of this 
problem. Under the imposed restrictions, the graph of equation (1) is con-
fined to the first quadrant. We note that (1) with non-negative parameters 
represents the family of all line segments whose endpoints are the rational 
points of the x and y axes. Thus, the line segment determined by the end-
points 

has the equation 

rqx + spy = pr. 

This is a form of (1) where rq = a and sp = b, and pr = n. Now we are 
ready to examine the general solution. 

3e THE SOLUTION 

The explicit formula involves the concept of the principal remainder 
modulo m, for which we may use the following notations 

DFN. (PRINCIPAL REMAINDER): 

(5) [[ y (mod m)]| = x iff x = y (mod m) and 0 < x < m - 1 

The following lemma, that is easily verified, though not essential to the deriva-
tion of the explicit formula, makes the solution of a specific example feasible. 
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Lemma. 

(6) II yi (mod m) 
i=i 

n [[ y. (mod m)]] (mod m) 
1=1 

As a special consequence of this lemma we may note that, 

(7) [[ y (mod m)]] = [[y (mod m)] (mod m) . 

Since the number of solutions of (1) will be finite, the method of solution will 
be to find the minimum positive integral value of x (or y), and then to find 
the corresponding value of y (or x) which will necessarily be maximum and 
then to subtract multiples of a (or b) to obtain the set of all possible non-
negative solutions of (1). The following formula for the minimum value of x 
is essentially due to Bouniakowski, and independently, Cauchy [ 1, pp. 55-56]. 

Theorem. If the equation, ax + by = n, has non-negative parameters, 
a, b, and n, and a > 1 and b > 1, and (a, b) = 1, then when non-negative 
integral solutions exist, the minimum non-negative integral value of x, which 
satisfies the equation such that y is also a non-negative integer, is given by 

(8) X m l n = flna^-^modb)! . 

Proof. The remarks made in Sec. 2 claim that there is no essential loss 
of generality by assuming the above conditions. It is important to note that we 
must assume a value of n such that non-negative solutions do exist. There 
does exist a finite number of values of n, for a given a and b, such that 
the equation will not have the non-negative solutions that we are seeking. This 
is proved in the next section. Formula (8) is independent of this consideration, 
therefore, we could obtain an erroneous value of X . if used without c i r -

mm 
cumspection, however, we would soon be aware of the er ror when the attempt 
to solve for the corresponding value of y was made. 

The equation ax + by = n is equivalent to the congruence 

(9) ax = n (mod b) . 
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Now by the Fermat-Euler Theorem if we multiply both sides of (9) by a * ^ - 1 , 
we obtain 

(10) x = n • a*(b) 1 (mod b) , 

whereby, the least value of x is the principal remainder # 

(11) X m . n = [ n. a ^ - V o d b)]j Q. E. D. 

Using the same principals we may derive a formula for X 

(12) X m a x = [ ^ ] - [ - f n ( m o d a ) ] . a ^ ^ ^ m o d b ) j , 

where [ ] denotes the greatest integer function. 
Proof. Equation (1) is equivalent to the congruence, 

(13) by = n (mod a) . 

Now if m = |[n(mod a)]], then b • y = m (mod a). Therefore, 

(14) by e { m, m + a, m + 2a, • • • , m + ka} . 

where k = [ n / a ] . We note that m + ka = n, hence, this is the maximum 
value that b • y can achieve. By substituting these values of b • y into (1) 
we obtain the corresponding values of x, that is , 

(15) x e | k, k - 1, k - 2, • • • , k - k } # 

in that order. Therefore, there is an integral solution of (1) when 

ja + m 

is an integer, where 0 < j < k. This situation is equivalent to the congruence 
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(16) ja + m = 0 (mod b) . 

The corresponding value of x is 

(17) x = k - j . 

Now since (a,b) = 1, we can solve (16) for j by using (4), theFermat-
Euler Theorem. This gives 

(18) j = - m a ^ ^ f m o d b ) . 

Now that j has been found, we can find x from (17). Since k represents the 
maximum value that x can be, we will have the maximum integral value of 
x that satisfies (1) by subtracting the least value of j from k as represented 
in (17). That least value of 5 is the principal remainder, |[_j_ (mod b ) | . By 
substituting for k, j , and m in (17), we arrive at (12). Q. E. D. 

Corollary. If a non-negative integral solution of (1) exists and (a, b) = 1, 
then there are at least 

[£] 
and at most 

solutions. 
Proof, We note that (13) has just one solution such that 0 < y < a [3 , 

p„ 51], Therefore, from (14) we also note that there are at least [k /b] . and 
at most [k/b] + 1 solutions. Also, since k = [ n / a ] , the corollary is proved. 

4. THE NON-EXISTENCE OF SOLUTIONS 

Even when a and b are relatively prime, in deference to Sec. 2, there 
will be cases when (1) has no solutions, due to the restriction that they be non-
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negative. Natural ly , we would wish to know jus t what c a s e s have no solut ions, 

the re fore , i t i s n e c e s s a r y to s ta te the following. 

Theorem, The equation ax + by = n, where a, b , and n a r e non-

negative in t ege r s and ab ^ 0 and (a, b) = 1, will not have in tegra l solutions 

> 0 when n = ab - (ja + kb), where j , k = 1, 2, 3 , • • • . 

Proof. A s s u m e (1) has a non-negat ive in tegra l solution and that n = ab 

-- (ja + kb) for some j and k. Then 

(19) ax + by = ab - ja - kb 

(20) a(x + j) + b(y + k) = ab 

Let X = x + j and Y = y + k; then, 

(21) aX + bY = ab. 

It i s impor tan t to note that X, Y, a, and b a r e all g r e a t e r than o r equal to 

one. F r o m (21) we obtain 

bY bY 
(22) b = X + — . o r b - X = — 
^ •7 a . a 

Now b = X i s an in teger , the re fore a divides Y, s ince a and b a r e r e l a -

t ively p r i m e . Suppose Y / a = r , then b - X = b r , but this i s imposs ib le 

s ince al l the quant i t ies a r e posi t ive in t ege r s , the re fore , t he r e i s a contradict ion. 

Q. E. D. 

It was proved by E„ Lucas [ 1, p. 68] that t he r e a r e | (a - l)(b - 1) such 

va lues of n which afford no solutions. He a l so gave a method to de te rmine if 

a given c a s e was solvable, but i t involved long computat ions. 

59 AN EXAMPLE 

Find all the non-negat ive in tegra l solutions of 20x + 14y = 410. (20,14) 

= 2, the re fore , by dividing through by 2 we have the p a r a m e t e r s 10, 7, and 

205. Now since 205 > 10-7 and (10,7) = 1 we can solve for X . . 
x f min 
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a ^ ^ m o d b ) ] ) 

p O S - l O ^ ^ ' V o d ? ) ] ] 

= ([205- 105(mod 7)]] 

By using the Lemma, this simplifies to 

Xmin = P ' S M m o d ? ) ] ] 

= [ [2 .3 .9 -9 (mod 7)]] 

= [ 2 - 3 - 2- 2 (mod 7)]j 

= |[3 (mod 7) | 

= 3 . 

By substituting X . into the original equation we obtain Y_ 
J b mm & max 

10-3 + 7y = 205 

y - 25 

Now subtract multiples of a, (10). In this case y G {25, 15, .5}. The cor-
responding values of x are found by adding multiples of b, (7). In this case 
x E { 3 , 10, 17 \. The three pairs of non-negative integral solutions of the 
original equation are (3, 25), (10, 15) and (17,5). 
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