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INTRODUCTION
The operator A is defined [1] wy:
Arf(r,a,b eee) = f(r,a,beee) - f(r-1,a,b-c")
and its inverse Er is defined by:
ArErf(r, a,beee) = f(r,a,bee")

In this article we will make use of these two operators, which are analo-
gous to the differential and integral operators, to establish several summations
involving generalized Fibonacci numbers,

First some elementary properties of Ar and Zr will be needed., In
deriving these and in subsequent work the subscripts to the operators may be
omitted if this causes no confusion,

PROPERTIES OF Ar AND Er

L. A(f(r) +g) = (@) +g) - Er-1) +gr-1))

(f(r) - f(r - 1)) + (g(r) - g(r - 1))

(0.1) A(f(r) +g(r)) = Af(r) + Ag(r)

2. A(f(r) - gr)) = f(r) - gr) - f(r-1) - gr - 1)

fr) - (g) -gr-1)) +gr -1 (f(r) -f(r-1))

I

0.2 (f(r) - g(r)) = f(r)Ag(r) + g(r - DAL(r)

If g(r) is a constant then Arg(r) = 0 and putting g(r) = C in (0.2) we

have:
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(0.3) A Cf(r) = CAL(r) if 4.C =0

This covers not only the case when C is a constant but also when it is

any function independent of r,

(0.4) At = @)

This follows immediately from the definition of a, sinch both left- and
right-hand members simplify to f(n +p) - f{n +p - 1),

4, Next some properties of 3, - Suppose: Xf(r) = g(r). Thenfrom the def-
initions of A and X:

gr) - gr-1) = f(r)
Summing these equalities with r taking values from 1 ton
n
gm) - g(0) = 2 £(r)
r=i
i.e,,
n
(0.5) 3fm) = ) f(r) + C )

r=i

where AnC = 0 but otherwise C is arbitrary, The connection between the
and the summation of f(n) is equivalent to that between indefinite and def-

inite integrals. In particular:

n
(0.6) 2 f(r) = Sfm) - (Sfm))

r=1

n=g
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5, From (0,5)

n
3 fn+s) = ) fr+s) +C
r=i
n+s S n+s
= Yfr)+ C-3 fr) = ) fx)+C
r=1 r=1 r=1

If we ignore the constants:

3 im+s) = (580 g

(0.7)
6.  In the definition of 3 put Af(r) in place of f(r)
ASAL(r)) = A(f(r))
ie.,
3Af(r) = f(r) +C
If we now ignore the constants
(0.8) 2Af(r) = f(r)
7, In (0.1) replace f(r) by 2f(r) and g(r) by 2g(r)

A(SE(r) +3g(r) ) = AZf(r) + AZg(r)

SASE(r) +3g(r) ) = Z(AXE(r) + AZg(r) )

(0.9) 2 (f(r) +g(r) = Zi(r) + 2g(r)
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8, From (0.2) replace g(r) by h(r) and rearranging:
f(r)Ah(r) = A(f(r) + h(r) ) - h(r - 1)Af(r)
Let h(r) = Sg(r)
f(r) . g(r) = A(f(r) - Zg(r)) - Zg(r - 1) - Af(r)

Thus:

(0.10) 2(f(x) - g(r)) = f(r)zg(r) - Z(2g(r - 1) - Af(r))

This last result, analogous to integration by parts, will be made use of
in deriving most of the results which follow,
If f(r) = C where ArC = 0 we can write (0.10) as:

(0.11) 2Cg(r) = CZg(r)
THE SUMMATIONS
The generalized Fibonacci numbers may be defined by:
(1.1) H =H + H
for all integers n, If Hy=0 and H; = 1 we get the Fibonacci sequence

which is denoted (Fp).
Two facts about the generalized sequence will be needed, They are:

-m = p-n° = - 2
(L2) H _H . -H =D where D = H_jH; - H2 [2]
and
(1.3) ' H, =F H +FH

n+r r-in r nt
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1. First a very simple (but useful) summation,

AH, = H, -H,_ =H_,
Thus:
(1.4) qEHn - Hn+2
2. Eaan+S
Note that
A = 2 - a1 = Pl -y
_ .n g -l
Eaan+S = aH . . a T (a DH oy
_ a -1 n+i
aan+s+z 2 z Htst
Now using:
n+ _ n-+
2a Horgr = Zaan+s A H g
2 4 -
a+ta-1 — n-i,
T Eaan+s = aan+S+2 -a (a 1)Hn+s+1
multiplying by a2
9 _ n _ i n+
(@ +a-1)za Hn+s a HnJrS +a Hn+s+1
If a2+a-1#0 i.e., a# (-1 +V5)/2
. _ a n+i
(1.5) Sa'H . = —2— ", +alH L )
at+a-1

k
3. Sn Hn+s
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k=0: this comes straight from (1.4)

(1.6) 2He = Hpen
k=1: 2By = 0H e, ~ T g
(1.7 = Mgy T Hpesas
=21 InfH o= 0®H - 3@n-DH
= 0y T B P P H
(L.8) = @+2H , (@ -2mH

Results (1.6), (1.7) and (1.8) suggest that there is a general form:

(L9) SnH L = AH L i B s

where Ak’ Bk are polynomials in n [3]

To determine the form of these polynomials consider:

(1.10) zlaan+S = n*H - san)H

n+s+2 n+s-+i

Now

k k
Ak = oK S ) (1;) KT 3 -y <1;) k-t
r=i

r=0

(1.10) now becomes:

_ r (k) k-r
znan+s = nan+s+z+ Z 1) (r) n H st

< r (k
nan+s+z * Z 1) (r) Ay Hprgrs T By rfnisty)
r=1
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k

_ k r (k

B R Z (-1) (r) Bk-—r Hn+s+2
r=i

k
rfk
* Z(—l) (r) Ay + Bep) Hotsts
r=1

Compare this with (1.9) and we have:

k
_ .k r(k
A = o+ Z(_l) (r) By »
r=1

(1.11)

k
B = DD <1;) Brer * By
r=1

(1.,11) and Ay = 1; By = 0 give us a wayto find Ak’ Bk for any non-negative
integer k, Using (1.9) we then have the required sum, This is not a verycon-
venient formula to deal with as the values of Ak’ Bk given at the end of this
article clearly show.

4 2 Han+s

This form is chosen rather than one with n +u and n + v as subscripts

because we can obtain this sum by putting n +u in place of n and letting s =

V- u
Consider:
AHanJrs = HnH1c1+s-2 * nts-1 n-
@ put s=1
= 2 3 2 =
AHanﬂ Hn L€ 2Hn Han+1
(o) put s=0
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2 = i = H2
AHn H H i.e., ZHan 5 Hn +

n-2 n+i

Combining these last two together
= 2
(1.12) 3 Hm(AHn + BHn +3) AHan Ht BH +
Now
AHn + BHn+3 =(A+ B)H + 2BHn+1
so recalling (1.3) we can make (1.12) the required sum if

A+B = F,_ and 2B =F_ .,

Let
=1 = -1 = 1
B = 3Fg and A Foy ~2Fg ZFs—3
(1.12) becomes:
=1 2
(1.13) EHan+s 2 (Fs—anHnﬂ * Fanw‘*z)
5 2 Han+an+s
Let
h) = H H_  -H = D"
n-1 nti n
see (1.2)
3 =
n-i an+1 Hn h(n)Hn

Now
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from (1.5)
Thus:

+ _ 3 = _ n
(1.14) EHn—iﬂanﬂ ZHn D(-1) Hn_1

We can sum H% by parts:

3 = . -
an Hn Han+1 2Hn—zﬂn—iHn
Rearranging:
3 = 2 = 2
(L15) 3IH HH 30 = BN +H HH o= HH
From (1.14) and (1.15) we have:
=1 2 -
(1.16) EHn_iHan+1 2<Han+1 + D(-1) Hn—i)
and:
3 =1 2~ pr-n2
EHn ﬁ(Hanﬂ D(-1) Hn—i)
We now have two particular cases of the summation required, If we had
2
ZHan +
as well as
sH
n

then by using the method of Section 4, we could generate E.H%Hn +r

2 = . - o
EHanH Hn+1 Han+1 2"Iqu--iﬂn Hn—

1

Han+1 2Han-H Han+1
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Thus:

12 = 1¢
(1.17) SHZH o= JHH H

Combining this with H; as promised:

2 = 1(F 2 -
(L.18)  ZH2H , = }(F,_(HH  -D(-1) H )+ FHH H )

To complete the generalization we require, in addition to the result just

derived,
2 Han-l-iHn+r
Now:
1 = 4 K
HnH]nrHHnﬂLr Hanﬂ(Fr-iHn Fan+1)
= F 2 2
Fr—iﬂanﬂ * FanHn+1

Using (1.18)

(1,19) SHH  H

7 = 1
nonH e 7F M H e H

r-1 n ntin2

b N 2 - -
+§F, @2, H o -DEDH)

All that remains now is to combine (1.18) and (1.19) in the same sort of

way.
= T 2 _pe-n™
zanHn+an+s Fs—lFr-i(Hanﬂ DED Hn—1)+Fs—1FanHn+1Hn+z
. . 2 - Do~
(1.20) TR HH  H o CFF ELH L - D 1)an)

Concentrating for the moment on the last term; this is:

2 _ - h - = H 2 + - n
FsFr(Hn+1Hn+2 DED) (Hn+1 Hn—i)) Fsrr(HnﬂHnﬂ D=1) Hn-i

— 2
* Hn+1(Han+‘z H‘n+1))

Substituting this in (1.20) we have:
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2SHH  H . = (FF -F _TF )D(—l)an_

n ntr n+s s-1"r-1 1

+ + 2
(Fs—iFr-l FsFr )Han+1

+ +
(FsFr FsFr--1 * FS~1Fr)Han+1Hn+2

and this simplifies down to:

eXH H  H  =(FF -F

DH )D(—l)an_ +H H H

F
s=1"1r=-1 1 s+r+n+1 n ntg

(1.21)
PUTTING IN THE LIMITS

We end by quoting the generalized summations with limits from 1 to n.

n
T _ a n+i _ n _
(2.1) Za Heps = 9 @ (Mg~ Hg) FarMy o ~Hgyy))
at+a-1
r=1
provided a?+a -1 # 0,
n
(2.2) Z I'kHr+s = AmH i T B g~ A0 g, = B O,
r=1
where Ak(n), Bk(n) can be generated from (1,11),
n
=1 - 2 -2
(2.3) HrHr+S ’Z(Fs—s(Hanﬂ Hoty) + FS(Hnﬂ H2))
r=1
n
= l — H — —_
(2.4) ZHrHr+SHr+t 2 (D(FsFt Fs—iFt—i)« 1)an—1 H—i)
r=i
* HgpinTntny — HaagrgHote)
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THE POLYNOMIALS A AND B

Let
X, m) = a; +amn Feee +anP +een +anq.
k P o

The table below gives the coefficients ap of the polynomials Ak’ Bk .

Xk(n) a ay a9 ag ay as
A, 0 0 0 0 0
B, 0 0 0 0 0 0
Ay 0 1 0 0 0 0
B, -1 0 0 0 0 0
A, 2 0 1 0 0 0
B, 3 -2 0 0 0 0
A -12 6 0 1 0 0
Bs -19 9 -3 0 0 0
Ay 98 -48 12 0 1 0
By 129 -76 18 -4 0 0
Aj -870 490 -120 20 0 1
B; -1501 795 -190 30 -9 0
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