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INTRODUCTION 

The operator A is defined [ l ] by: 

A r f ( r f a , b . . . ) = f ( r s a s b . . . ) - f(r - l . a . b -• •) 

and its inverse X is defined hjt 
r J 

A r 2 r f ( r , a , b - - - ) = f ( r , a , b - - - ) 

In this article we will make use of these two operators* which are analo-
gous to the differential and integral operators, to establish several summations 
involving generalized Fibonacci numberse 

First some elementary properties of A and 1 will be needed. In 
deriving these and in subsequent work the subscripts to the operators may be 
omitted if this causes no confusion. 

PROPERTIES OF A r AND £ r 

1, A(f(r) + g(r)) = (f(r) + g(r)) - (f(r - 1) + g(r - 1) ) 

= (f(r) - f(r - 1)) + (g(r) - g(r - 1) ) 

(0.1) A(f(r) +g(r) ) = Af(r) + Ag(r) 

2. A(f(r) . g(r) ) = f(r) . g(r) - f(r - 1) - g(r - 1) 

= f(r) • (g(r) - g(r - 1) ) + g(r - 1) . (f(r) - f(r - 1) ) 

(0.2) (f(r) . g(r) ) = f(r)Ag(r) + g(r - l)Af(r) 

If g(r) is a constant then A g(r) = 0 and putting g(r) = C in (0.2) we 
have: 
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(0.3) ArCf(r) = c y f r ) if ArC = 0 

This covers not only the case when C is a constant but also when it is 
any function independent of r. 

(0.4) Anf(n + p) = ( A r f ( r ) ) r ^ ^ 

This follows immediately from the definition of A sinch both left- and 
right-hand members simplify to f(n + p) - f(n + p - l) . 

4. Next some properties of X . Suppose: 2f(r) = g(r). Then from the def-
initions of A and 2 : 

g(r) - g(r - 1) = f(r) 

Summing these equalities with r taking values from 1 to n 

n 

g(n) - g(0) = E f ( r ) 
r=i 

i. e., 

n 
(0.5) Xf(n) = £ f(r) + C 

r=i 

where A C = 0 but otherwise C is arbitrary. The connection between the 
and the summation of f(n) is equivalent to that between indefinite and def-

inite integrals. In particular: 

(0.6) Z m = Sf(n) - £f(n))n = 0 

r=i 
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5, From (0.5) 

n 
2nf(n + s) = £ f ( r + s) + C 

r=i 

n+s s n+s 
= £ f(r) + C - £ f(r) = E m + C! 

r=i r=i r=i 

If we ignore the constants; 

(0.7) 2nf(n + s) = ( S / W ) r = n + s 

6(» In the definition of 2 put Af(r) in place of f(r) 

A(2Af(r)) = A(£(r) ) 

i. e . , 

SAf(r) = f(r) + C 

If we now ignore the constants 

(0.8) SAf(r) = £(r) 

7. In (0.1) replace f(r) by £f(r) and g(r) by £g(r) 

A(2f(r)+.2g(r) ) = AXf(r) + A2g(r) 

SAGf(r) + 2g(r) ) = 2(ASf(r) + AXg(r) ) 

i. e . , 

(0.9) S(f(r) + g(r) = 2f(r) + Ig(r) 
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8. From (0.2) replace g(r) by h(r) and rearranging: 

f(r)Ah(r) = A(f(r) • h(r) ) - h(r - l)Af(r) 

Let h(r) = Sg(r) 

f(r) . g(r) = A(f(r) . 2g(r) ) - 2g(r - 1) . Af(r) 

Thus: 

(0.10) 2(f(r) . g(r) ) = f(r)2g(r) - l(Ig(r - 1) . Af(r)) 

This last result, analogous to integration by parts, will be made use of 
in deriving most of the results which follow. 

If f(r) = C where A C = 0 we can write (0.10) a s : 

(0.11) 2Cg(r) = CSg(r) 

THE SUMMATIONS 

The generalized Fibonacci numbers may be defined by: 

(1.1) H f H + H 
v ' n ' n-i n-2 

for all integers n. If H0 = 0 and Hj = 1 we get the Fibonacci sequence 
which is denoted (Fn). 

Two facts about the generalized sequence will be needed. They a re : 

(1.2) H n - i H n + 1 - H* = D(- l ) n where D = H^Hj - H* [2] 

and 

(1.3) H , = F H + F H ' 
\ / n + r r_j n r n + 1 
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1. F i rs t a very simple (but useful) summation* 

A H n = H n " H n - i = H n- 2 

Thus; 

d'4) ?En = =U 
2- S a X + S 

Note that 

A n n n-i n- i , _ 
Aa = a - a = a (a - 1) 

i a X* = aX*rt " 2an_1 (a ' 1 ) H n + S + i 
n „ a - 1 v n+i .„ 

~ a l W t * T " i a n+s+i 
a 

Now using; 
S a G + l H n + S + I = S a X + S

+ a I 1 + l H n + s + 1 

^ ^ S a X + s = a X + s + 2 " a n " V " DH n + s + 1 a2 

multiplying by a2 

(a2
 + a - l ) S a X + s = a n " V + s

 + ^ X + s + i 

If a2 + a - 1 / 0 i. e . , a / (-1 ± VHj/2 

(1.5) X a X + s = - ^ — ; ( a n X + S
 + a X + s + 1 > 

a4 + a - 1 

3. 2 n k H _,_ 
^ n+s 
Before attempting this summation we will find the particular sums when 

k = 0 , 1 , 2. 
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k=0: this comes straight from (1.4) 

k=l: SnH[n+s = nH n + s ^ - . S H ^ 

M = ^ W a ~ Vs+3 

k=2: Sn2Hn+g = n * ^ - S(2n - l )H n + s + 1 

= n 2 * W " 2nHn+s+s + 2 I W 4
 + Hn+S+3 

<1.8) = <ta» + 2)Hn+s+2 + (3 - 2D) Hn+g+3 

Results (1.6), (1.7) and (1.8) suggest that there is a general form: 

^ 2 n \ + s = A k H n + s^ + B k H n + S + 3 

where A,9 B, are polynomials in n [3]. 
To determine the form of these polynomials consider: 

(1.10) l n \ + s = n \ + g ^ - 2(Ank)Hn+s+1 

Now 

Ank = nk - £ (-l) r (*) nk" r = X>1> 
r+i / k \ k - r 

r / ^ ' "' \ r / n 

r=o f=l 

(1.10) now becomes.9 

k 

s - V s - A w E<-i»r(r)»k"r y n+s+i 
r=i 

k 
= n X + s^ + E ( " 1 ) r (r) ^k-rVs+a + Bk-rHnW 

r=i 
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V r=l / 
n+s+2 

k 
V 1 < A _ -h IS 1 I ^ 

n+s+3 
r=i 

+ S ^ rMAk-r + Bk-r> K 

Compare this with (199) and we have? 

* k - ^ + Z<-»r(J)v, 
r=i 

( ia i ) 
k 

E<-«r(") =k = 2.<-« U< A k-r + Bk-r> 
r=i 

(1.11) and A0 = 1; B0 = 0 give us a way to find A, , B, for any non-negative 
integer k. Using (1. 9) we then have the required sum. This is not a very con-
venient formula to deal with as the values of A, , B, given at the end of this 
article clearly show. 

48 SH H , 
n n+s 

This form is chosen rather than one with n + u and n + v as subscripts 
because we can obtain this sum by putting n + u in place of n and letting s = 
v - u. 

Considers 

A H H ± = H H _,_ +H , H n n+s n n+s-2 n+s-i n-2 

(a) put s = 1 

AH H ^ = H2 i. e9 , £H2 = H H . n n+l n ' n n n+i 

(b) put s = 0 
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AH2 = H H . L e . , 2 H H , = H 2 n n-2 n+i ' n n+3 n+2 

Combining these last two together 

(1.12) 2Hn(AHn + BHn+3) = AHnHn+1 + B H ^ 

Now 

A H n + B H
n + 3 = <A + B>Hn + 2 B H n + i 

so recalling (1.3) we can make (1.12) the required sum if 

A + B = F and 2B = F s-i s 

Let 

B = £ F s and A = F g _ i - j F f l = ^ 

(1.12) becomes: 

(1.13) S H H ± = 1 ( F H H _,_ + F H2 ) 
v • ; ^ n n+s 2V s-3 n n+i s n+27 

5. 2H H , H , 
n n+r n+s 

Let 

h<n> = Hn-iHn+i - H n = ^ 

see (1.2) 

H H H , - H3 = h(n)H n-i n n+i n w n 

Now 

Ih(n)Hn = D I ( - l ) n H n = D(-l)nHn_i 
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from (1.5) 

Thus: 

<L14> S H n - i H n H n + i - 2 H n = D ^ X - i 

We can sum H3 by parts : 

SH3 = H • H H ^ - J H H H 
n n n n+i ^ n-2 n-i n 

Rearranging: 

(1.15) IB H H . + XH3 = H2H + H H H ^ = H H2 

x ' n-i n n+l n n n+i n-i n n+l n n+i 

From (1.14) and (1.15) we have: 

(1.16) 2H H H ,4 = i(H H2 + D(-l)nH ) 
v ' n-l n n+l 2X n n+i v ; n - r 

and: 

XH3 = i(H H2 - D(-l)nH ) n 2^ n n+i v ; n - r 

We now have two particular cases of the summation required. If we had 

IH2H , n n+i 

as well as 

IE3 

then by using the method of Section 49 we could generate SH2 H 

SH2H X =H - H H , - S H H • H n n+i n+i n n+i n-i n n-i 

= H H2 ~2H2H ,, +H2H ^ n n+i n n+l n n+i 
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Thus: 

(1.17) 2H2H ,4 = if i H ^ H _̂  ^ ' n n+i 2 n n+i n+2 

Combining this with H3 as promised; 

(1.18) SH2H , = 1(F 4(H H2 -D( - l ) n H ) + F H H _,_ H _,J 
y ' n n+r %x r - r n n+i v 7 n - r r n n+i n+2; 

To complete the generalization we require, in addition to the result just 
derived, 

SH H _,_H _,_ n n+i n+r 

Now: 

H H ^ H ^ = H H J _ ( F H + F H , ) n n+i n+r n n+r r - i n r n+r 
= F H2H , + F H H2 

r - i n n+i r n n+i 

Using (1.18) 

(1.19) SH H J A = IF H H , H ^ \ / *•< n n + 1 n + r 2 r _ ! n n+i n+2 

+ *F (H2 H . -D( - l ) n H ) 
2 r v n+i n+2 v 7 n7 

All that remains now is to combine (1.18) and (1,19) in the same sort of 
way. 

2XH H . H , = F F (H H2 -D(~l)nH ) + F F H H , H . 
n n+r n+s s-l r - r n n+i v ; n - r s-i r n n+i n+2 

(1.20) + F F H H . H , +F F (H2 H _̂  - D ^ l ) 3 ^ ) 
\ / s r - i n n+i n+2 s rx n+i n+2 v ; n ; 

Concentrating for the moment on the last term; this i s : 

F F (H2 H ^ -D(- l ) n (H , - H J) = F F (H2 H + D(-l)nH A s rv n+i n+2 v ; v n+i n-i7/ s r^ n+i n+2 v ; n-i 
+ H , (H H . - H2 , J ) n+r n n+2 n+i77 

Substituting this in (1.20) Ave have: 



1968] GENERALIZED FIBONACCI SUMMATIONS 107 

22H H ^ H ^ = (F F - F F iDf- l ) 1 ^ n n+r n+s v s r s - i r - r l ; n-i 
+ (F F + F F )H H2 

v s-i r - i s r ; n n+i 
+ (F F + F F + F F )H H ^ H _̂  x s r s r - i s-i r 7 n n+i n+2 

and this simplifies down to: 

2SH H . H . = ( F F - F F )D(-l)nH + H , , , H H , 
n n+r n+s v s r s-i r-r v ' n-i s+r+n+r n n+i 

(1.21) 

PUTTING IN THE LIMITS 

We end by quoting the generalized summations with limits from 1 ton, 

n 
(2.1) V arH . = — (an+1(H ^_ - H ) + an(H j . ̂  - H , ) ) 
1 ; Z-/ r+s o . _, x v n+s s ; v n+s+i s+r ' a4 + a - 1 r=i 

provided a2 + a - 1 ^ 0# 

(2.2) £ r\+s = V -̂W* + W S + 3 " V ^ s * " Bk<°>H
S+3 • 

r=i 

where A,(n)9 B,(n) can be generated from (l. 11). 

n 
(2.3) V H H _,_ = i ( F (E H ^ - HnHi) + F (H2 - H2) 
v ; L-J r r+s 2V s-3v n n+i u 1 ; sx n+2 2; 

r=i 

<2'4> £HrHr+S
Hr+t = f(D<FsFt " V n ^ X - i " H-i > 

r=i 

+ Hs+t+n+iHnHn+i " H s+t+i H ° H l ) 



108 GENERALIZED FIBONACCI SUMMATIONS [Apr. 

THE POLYNOMIALS A AND B 

Let 

X,(n) = a0 + a p + - . • + a n p + • • • + a n^ . 

The table below gives the coefficients a of the polynomials A, , B, . 

Xk(n) 

A0 

B0 

Ai 

Bi 

A2 

B2 

A3 

B 3 

A4 

B 4 

A5 

B 5 

a0 

1 

0 

0 

- 1 

2 

3 

-12 

-19 

98 

129 

-870 

-1501 

a i 

0 

0 

1 

0 

0 

-2 

6 

9 

-48 

-76 

490 

795 

a2 

0 

0 

0 

0 

1 
0 

0 

-3 

12 

18 
-120 

-190 

a 3 

0 

0 

0 

0 

0 

0 

1 
0 

0 

-4 

20 

30 

&4 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 
0 

- 5 

a 5 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 
1 

0 
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