where P_{n} is the Pell number defined by $P_{1}=1, P_{2}=2$, and $P_{n+2}=2 P_{n+1}$ $+P_{n}$ 。

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico.
Letting $\mathrm{w}=2 \mathrm{x} \pm 1$ changes $\mathrm{x}^{2}+(\mathrm{x} \pm 1)^{2}=\mathrm{z}^{2}$ into $\mathrm{w}^{2}-2 \mathrm{z}^{2}=-1$. Let Z be the ring of the integers and let $Z \sqrt{2}$ be the ring consisting of the real numbers $\alpha=\mathrm{z}+\mathrm{b} \sqrt{2}$ with a and b in Z . Let V consist of the positive real numbers $\alpha=a+b \sqrt{2}$ of $Z[\sqrt{2}]$ such that $a^{2}-2 b^{2}=-1$. Then V can be shown to be a group under multiplication. Since V has no number between 1 and $1+\sqrt{2}$, it follows that V is the cyclic group generated by $1+\sqrt{2}$. The odd powers $(1+\sqrt{2})^{2 \mathrm{n}-1}$ lead to $\mathrm{a}^{2}-2 \mathrm{~b}^{2}=-1$. Therefore the positive integral solutions of $w^{2}-2 z^{2}=-1$ are obtained by equating "rational" and "irrational" parts of $w_{n}+z_{n} \sqrt{2}=(1+\sqrt{2})^{2 n-1}$, i. $e_{\text {。 }}$,
$w_{n}=\left[(1+\sqrt{2})^{2 n-1}+(1-\sqrt{2})^{2 n-1}\right] / 2, \quad z_{n}=\left[(1+\sqrt{\overline{2}})^{2 n-1}-(1-\sqrt{2})^{2 n-1}\right] / 2 \sqrt{2}$.

The desired formulas then may be found using the analogue $P_{n}=\left[(1+\sqrt{2})^{n}\right.$ - $\left.(1-\sqrt{2})^{\mathrm{n}}\right] / 2 \sqrt{2}$ of one of the Binet formulas.

Also solved by A. C. Shannon and the proposer.
(Continued from p. 173)

$$
\begin{gathered}
\mathrm{P}_{3}(\mathrm{x})=32-13 \mathrm{x}-99 \mathrm{x}^{2}-32 \mathrm{x}^{3}+9 \mathrm{x}^{4}+\mathrm{x}^{5} \\
\mathrm{P}_{4}(\mathrm{x})=243+1181 \mathrm{x}-1952 \mathrm{x}^{2}-1271 \mathrm{x}^{3}+257 \mathrm{x}^{4}+32 \mathrm{x}^{5} \\
\mathrm{P}_{5}(\mathrm{x})=3125+7768 \mathrm{x}-15851 \mathrm{x}^{2}-9752 \mathrm{x}^{3}+1944 \mathrm{x}^{4}+243 \mathrm{x}^{5} \\
\sum_{\mathrm{n}=0}^{\infty} \mathrm{F}_{\mathrm{n}+\mathrm{k}} \mathrm{x}^{\mathrm{n}}=\frac{\mathrm{P}_{\mathrm{k}}(\mathrm{x})}{1-13 \mathrm{x}-104 \mathrm{x}^{2}+260 \mathrm{x}^{3}+260 \mathrm{x}^{4}-104 \mathrm{x}^{5}-13 \mathrm{x}^{6}+\mathrm{x}^{7}} \\
\mathrm{k}=0,1,2,3,4,5,6
\end{gathered} \quad \begin{gathered}
\mathrm{P}_{0}(\mathrm{x})=\mathrm{x}\left(1-12 \mathrm{x}-53 \mathrm{x}^{2}+53 \mathrm{x}^{3}+12 \mathrm{x}^{4}-\mathrm{x}^{5}\right) \\
\mathrm{P}_{1}(\mathrm{x})=1-12 \mathrm{x}-53 \mathrm{x}^{2}+53 \mathrm{x}^{3}+12 \mathrm{x}^{4}-\mathrm{x}^{5} \\
\left.\mathrm{P}_{2} \mathrm{x}\right)=1+51 \mathrm{x}-207 \mathrm{x}^{2}-248 \mathrm{x}^{3}+103 \mathrm{x}^{4}+13 \mathrm{x}^{5}-\mathrm{x}^{6} \\
\left.\mathrm{P}_{3} \mathrm{x}\right)=64-103 \mathrm{x}-508 \mathrm{x}^{2}-157 \mathrm{x}^{3}+117 \mathrm{x}^{4}+12 \mathrm{x}^{5}-\mathrm{x}^{6} \\
\left.\mathrm{P}_{4} \mathrm{x}\right)=729+6148 \mathrm{x}-16,797 \mathrm{x}^{2}-16,523 \mathrm{x}^{3}+6668 \mathrm{x}^{4}+831 \mathrm{x}^{5}-64 \mathrm{x}^{6} \\
\mathrm{P}_{5}(\mathrm{x})=15,625+59,019 \mathrm{x}-206,063 \mathrm{x}^{2}-182,872 \mathrm{x}^{3}+76,644 \mathrm{x}^{4}+9413 \mathrm{x}^{5} \\
\mathrm{P}_{6}(\mathrm{x})=262,144+1,418,937 \mathrm{x}-4,245,372 \mathrm{x}^{2}-3,985,856 \mathrm{x}^{3}+1,634,413 \mathrm{x}^{4}+202,396 \mathrm{x}^{5} \\
\text { (Continued on } \mathrm{p} \cdot 166 .)
\end{gathered}
$$

