FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS

M. N. S. SWAMY

Nova Scotia Technical College, Halifax, Canada

1. INTRODUCTION

A set of polynomials $B_{n}(x)$ and $b_{n}(x)$ were first defined by MorganVoyce [1] as,

$$
\begin{equation*}
b_{n}(x)=x \cdot B_{n-1}(x)+b_{n-1}(x) \quad(n \geq 1) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}(x)=(x+1) B_{n-1}(x)+b_{n-1}(x) \quad(n \geq 1) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{0}(x)=B_{0}(x)=1 \tag{3}
\end{equation*}
$$

In an earlier article [2], a number of properties of these polynomials $B_{n}(x)$ and $b_{n}(x)$ were derived and these were used in a later article to establish some interesting Fibonacci identities [3]. We shall now consider some further properties of these polynomials and establish their relations with the Fibonacci polynomials $f_{n}(x)$.

2. GENERATING MATRIX

The matrix Q defined by,

$$
\mathrm{Q}=\left[\begin{array}{cr}
(\mathrm{x}+2) & -1 \tag{4}\\
1 & 0
\end{array}\right]
$$

may be called as the generating matrix, since we may establish by induction that,

$$
Q^{n}=\left[\begin{array}{ll}
B_{n} & -B_{n-1} \tag{5}\\
B_{n-1} & -B_{n-2}
\end{array}\right]
$$

(Received February 1967)

168 FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS [Apr.
Hence,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
b_{n} & -b_{n-1} \\
b_{n-1} & -b_{n-2}
\end{array}\right]=\left[\begin{array}{ll}
\left(B_{n}-B_{n-1}\right) & -\left(B_{n-1}-B_{n-2}\right) \\
\left(B_{n-1}-B_{n-2}\right) & -\left(B_{n-2}-B_{n-3}\right)
\end{array}\right]=Q^{n}-Q^{n-1}} \\
& \text { (6) } \\
& =Q^{n-1}(Q-I)
\end{aligned}
$$

Since the determinant of $Q=1$, we have

$$
\begin{equation*}
B_{n+1} B_{n-1}-B_{n}^{2}=-1 \tag{7}
\end{equation*}
$$

and

$$
\left|\begin{array}{cc}
b_{n} & -b_{n-1} \\
b_{n-1} & -b_{n-2}
\end{array}\right|=|Q-I|=\left|\begin{array}{cc}
x+1 & -1 \\
1 & -1
\end{array}\right|=x
$$

or

$$
\begin{equation*}
b_{n+1} b_{n-1}-b_{n}^{2}=x \tag{8}
\end{equation*}
$$

3. B_{n} AND b_{n} AS TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Letting $\cos \boldsymbol{\theta}=(x+2) / 2$ in the identity

$$
\sin (\mathrm{n}+1) \theta+\sin (\mathrm{n}-1) \theta=2 \sin (\mathrm{n} \theta) \cos \theta
$$

we have

$$
\frac{\sin (n+1) \theta}{\sin \theta}+\frac{\sin (n-1) \theta}{\sin \theta}=(x+2) \frac{\sin n \theta}{\sin \theta} \quad(-4 \leq x \leq 0)
$$

with

$$
\begin{aligned}
\frac{\sin (\mathrm{n}+1) \theta}{\sin \theta} & =1 & & \text { for } \mathrm{n}=0 \\
& =(\mathrm{x}+2) & & \text { for } \mathrm{n}=1
\end{aligned}
$$

Thus,

$$
\frac{\sin (n+1) \theta}{\sin \theta}
$$

satisfies the difference equation for B_{n}. Hence,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{n}}(\mathrm{x})=\frac{\sin (\mathrm{n}+1) \theta}{\sin \theta} \quad(-4 \leq \mathrm{x} \leq 0) \tag{9}
\end{equation*}
$$

Similarly, if $\cosh \phi=(x+2) / 2$, then

$$
\begin{equation*}
\mathrm{B}_{\mathrm{n}}(\mathrm{x})=\frac{\sinh (\mathrm{n}+1) \phi}{\sinh \phi} \quad(\mathrm{x} \geq 0) \tag{10}
\end{equation*}
$$

Since $b_{n}=B_{n}-B_{n-1}$, we have

$$
\begin{equation*}
\mathrm{b}_{\mathrm{n}}(\mathrm{x})=\frac{\cos (2 \mathrm{n}+1) \theta / 2}{\cos \theta / 2} \quad(-4 \leq \mathrm{x} \leq 0) \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}_{\mathrm{n}}(\mathrm{x})=\frac{\cosh (2 \mathrm{n}+1) \phi / 2}{\cosh \phi / 2} \quad(\mathrm{x} \geq 0) \tag{11b}
\end{equation*}
$$

4. DIFFERENTIAL EQUATIONS FOR $\mathrm{B}_{\mathrm{n}}(\mathrm{x})$ AND $\mathrm{b}_{\mathrm{n}}(\mathrm{x})$

It has been shown earlier [2] that

$$
\begin{equation*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n+k-1}{n-k} x^{k}=\sum_{k=0}^{n} c_{n}^{k} x^{k} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}(x)=\sum_{k=0}^{n}\binom{n+k}{n-k} x^{k}=\sum_{k=0}^{n} d_{n}^{k} x^{k} \tag{13}
\end{equation*}
$$

Hence

$$
\frac{c_{n}^{k+1}}{c_{n}^{k}}=\frac{\binom{n+k+2}{n--1}}{\binom{n+k+1}{n-k}}=\frac{(n-k)(n+k+2)}{(2 k+3)(2 k+2)}
$$

Thus, the coefficients of x^{k} and x^{k+1} of $B_{n}(x)$ are related by
(14) $\quad \mathrm{k}(\mathrm{k}-1) \mathrm{c}_{\mathrm{n}}^{\mathrm{k}}+4(\mathrm{k}+1) \mathrm{k} \mathrm{c}_{\mathrm{n}}^{\mathrm{k}+1}+3 \mathrm{k} \mathrm{c}_{\mathrm{n}}^{\mathrm{k}}+6(\mathrm{k}+1) \mathrm{c}_{\mathrm{n}}^{\mathrm{k}+1}-\mathrm{n}(\mathrm{n}+2) \mathrm{c}_{\mathrm{n}}^{\mathrm{k}}=0 \cdots$

But the coefficient of x^{k} in the expansion of

$$
\mathrm{x}^{2} \mathrm{~B}_{\mathrm{n}}^{\prime \prime}+4 \mathrm{x} \mathrm{~B}_{\mathrm{n}}^{\prime}+3 \mathrm{x} \mathrm{~B}_{\mathrm{n}}^{\prime}+6 \mathrm{~B}_{\mathrm{n}}^{\prime}-\mathrm{n}(\mathrm{n}+2) \mathrm{B}_{\mathrm{n}}
$$

is the same as the left-hand side expression of (14). Hence, $B_{n}(x)$ satisfies the differential equation

$$
\begin{equation*}
\mathrm{x}(\mathrm{x}+4) \mathrm{y}^{\prime \prime}+3(\mathrm{x}+2) \mathrm{y}^{\prime}-\mathrm{n}(\mathrm{n}+2) \mathrm{y}=0 \tag{15}
\end{equation*}
$$

Similarly, starting with (13) we can show that $b_{n}(x)$ satisfies the differential equation

$$
\begin{equation*}
x(x+4) y^{\prime \prime}+2(x+1) y^{\prime}-n(n+1) y=0 \tag{16}
\end{equation*}
$$

Using (15) and (16) we shall now derive some identities for $\mathrm{B}_{\mathrm{n}}(\mathrm{x})$ and $b_{n}(x)$. We have from (15)

$$
x(x+4)\left(B_{n}^{\prime \prime}-B_{n-1}^{\prime \prime}\right)+3(x+2)\left(B_{n}^{\prime}-B_{n-1}^{\prime}\right)-n(n+2) B_{n}+(n+1)(n-1) B_{n-1}=
$$

or,

$$
x(x+4) b_{n}^{\prime \prime}+3(x+2) b_{n}^{\prime}-n(n+1) b_{n}-n B_{n}-(n+1) B_{n-1}=0
$$

Using (16) this may be reduced to

$$
\begin{equation*}
(x+4) b_{n}^{\prime}(x)=n B_{n}(x)+(n+1) B_{n-1}(x) \tag{17}
\end{equation*}
$$

Hence,
(18) $(x+4)\left(b_{n+1}^{\prime}-b_{n}^{\prime}\right)=(n+1) B_{n+1}+(n+2) B_{n}-n B_{n}-(n+1) B_{n-1}$

Differentiating (1) we get,

$$
\begin{equation*}
b_{n+1}^{\prime}-b_{n}^{\prime}=x B_{n}^{\prime}+B_{n} \tag{19}
\end{equation*}
$$

Substituting (19) in (18) and simplifying we have

$$
\begin{equation*}
x(x+4) B_{n}^{\prime}(x)=n B_{n+1}(x)-(n+2) B_{n-1}(x) \tag{20}
\end{equation*}
$$

From (20) we may derive that

$$
\begin{equation*}
x(x+4) b_{n}^{\prime}(x)=n b_{n+1}(x)+b_{n}(x)-(n+1) b_{n-1}(x) \tag{21}
\end{equation*}
$$

5. INTEGRAL PROPERTIES

It has been shown earlier [2] that,

$$
\begin{equation*}
\int b_{n}(x) d x=\frac{B_{n+1}(x)-B_{n-1}(x)}{(n+1)}+c \tag{22}
\end{equation*}
$$

c being an arbitrary constant. We also know that,

$$
\left.\begin{array}{ll}
\mathrm{B}_{\mathrm{n}}(0)=(\mathrm{n}+1) ; & \mathrm{B}_{\mathrm{n}}(-4)=(-1)^{\mathrm{n}}(\mathrm{n}+1) \tag{23}\\
\mathrm{b}_{\mathrm{n}}(0)=1 & ;
\end{array} \quad \mathrm{b}_{\mathrm{n}}(-4)=(-1)^{\mathrm{n}}(2 \mathrm{n}+1)\right)
$$

Hence, from (22) and (23) we have the two special integrals,
(24a)

$$
\int_{-4}^{0} \mathrm{~B}_{2 \mathrm{n}}(\mathrm{x}) \mathrm{dx}=4 /(2 \mathrm{n}+1)
$$

172 FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS [Apr.
and
(24b)

$$
\int_{-4}^{0} B_{2 n+1}(x) d x=0
$$

Since

$$
\mathrm{B}_{\mathrm{n}}^{2}(\mathrm{x})=\sum_{0}^{\mathrm{n}} \mathrm{~B}_{2 \mathrm{~m}}
$$

we have

$$
\begin{equation*}
\int_{-4}^{0} B_{n}^{2}(x) d x=\sum_{0}^{n} 4 /(2 m+1) \tag{25}
\end{equation*}
$$

Similarly, the following integrals may be established:

$$
\begin{gathered}
\int_{-4}^{0} b_{n}^{2}(x) d x=-\int_{-4}^{0} b_{2 n+1}(x) d x=4 /(2 n+1) \\
\int_{-4}^{0} B_{n}(x) B_{n+1}(x) d x=0 \\
\int_{-4}^{0} b_{n}(x) B_{n}(x) d x=-\int_{-4}^{0} b_{n+1}(x) B_{n}(x) d x=-4 \sum_{0}^{n} 1 /(2 m+1) \\
\int_{-4}^{0} b_{n}(x) b_{n+1}(x) d x=-4-8 \sum_{1} 1(2 m+1)
\end{gathered}
$$

$$
\begin{gathered}
\int_{-4}^{0} B_{n+1}(x) B_{n-1}(x) d x=4 \sum_{1}^{n} 1 /(2 m+1) \\
\int_{-4}^{0} b_{n+1}(x) b_{n-1}(x) d x=8 \sum_{1}^{n-1} 1 /(2 m+1)+4 /(2 n+1)-8 \\
0 \\
\int_{-4}^{0} b_{n}^{2}(x) d x=8 \sum_{1}^{n-1} 1 /(2 m+1)+4 /(2 n+1)
\end{gathered}
$$

$$
\text { 6. } \mathrm{Z} E R O S O F \quad \mathrm{~B}_{\mathrm{n}}(\mathrm{x}) \text { AND } \mathrm{b}_{\mathrm{n}}(\mathrm{x})
$$

From (9) we see that the zeros of $B_{n}(x)$ are given by $\sin (n+1) \theta=0$. Hence,

$$
\theta=(\mathrm{r} \pi) /(\mathrm{n}+1), \quad \mathrm{r}=1,2, \ldots, \mathrm{n}
$$

Therefore,

$$
(x+2)=2 \cos \frac{r}{n+1} \pi
$$

or,

$$
\mathrm{x}=-4 \sin ^{2}\left\{\frac{\mathrm{r}}{\mathrm{n}+1} \cdot \frac{\pi}{2}\right\}, \quad \mathrm{r}=1,2, \cdots, \mathrm{n}
$$

Similarly, the zeros of $b_{n}(x)$ are given by

$$
-4 \sin ^{2}\left\{\frac{2 r-1}{2 r+1} \cdot \frac{\pi}{2}\right\}, \quad r=1,2, \cdots, n
$$

Thus the zeros of $B_{n}(x)$ and $b_{n}(x)$ are real, negative and distinct.

$$
\text { 7. } \mathrm{B}_{\mathrm{n}}(\mathrm{x}), \mathrm{b}_{\mathrm{n}}(\mathrm{x}) \text { AND } \mathrm{f}_{\mathrm{n}}(\mathrm{x})
$$

The Fibonacci polynomials $f_{n}(x)$ are defined by

$$
\mathrm{f}_{\mathrm{n}+1}(\mathrm{x})=\mathrm{x} \mathrm{f}_{\mathrm{n}}(\mathrm{x})+\mathrm{f}_{\mathrm{n}-1}(\mathrm{x}) \quad(\mathrm{n} \geq 2)
$$

with

$$
f_{1}(x)=1 \quad \text { and } \quad f_{2}(x)=x .
$$

It is also known [4] that

$$
\begin{equation*}
f_{n}(x)=\sum_{j=0}^{[(n-1) / 2]}\binom{n-j-1}{j} x^{n-2 j-1} \tag{27}
\end{equation*}
$$

where $[\mathrm{n} / 2]$ is the greatest integer in ($\mathrm{n} / 2$). Hence

$$
\begin{aligned}
f_{2 n+1}(x)=\sum_{j=0}^{n}\binom{2 n-j}{j} x^{2 n-2 j} & =\sum_{r=0}^{n}\binom{n+r}{n-r}\left(x^{2}\right)^{r} \\
& =b_{n}\left(x^{2}\right),
\end{aligned}
$$

from (13). Hence,

$$
\begin{equation*}
\mathrm{b}_{\mathrm{n}}\left(\mathrm{x}^{2}\right)=\mathrm{f}_{2 \mathrm{n}+1}(\mathrm{x}) \tag{28}
\end{equation*}
$$

Now

$$
\mathrm{f}_{2 \mathrm{n}+3}(\mathrm{x})-\mathrm{f}_{2 \mathrm{n}+1}(\mathrm{x})=\mathrm{xf}_{2 \mathrm{n}+2}(\mathrm{x})
$$

or

$$
b_{n+1}\left(x^{2}\right)-b_{n}\left(x^{2}\right)=x f_{2 n+2}(x)
$$

Hence from (1) we have

$$
x^{2} B_{n}\left(x^{2}\right)=x f_{2 n+2}(x)
$$

or

$$
\begin{equation*}
\mathrm{B}_{\mathrm{n}}\left(\mathrm{x}^{2}\right)=\frac{1}{\mathrm{x}} \mathrm{f}_{2 \mathrm{n}+2}(\mathrm{x}) \tag{29}
\end{equation*}
$$

Thus, $B_{n}(x), b_{n}(x)$ and $f_{n}(x)$ are interrelated.

$$
\text { (See also H-73 Oct. } 1967 \text { pp 255-56) }
$$

REFERENCES

1. A. M. Morgan-Voyce, 'Ladder Network Analysis Using Fibonacci Numbers," IRE. Transactions on Circuit Theory, Vol. CT-6, Sept. 1959, pp. 321-322.
2. M. N. S. Swamy, 'Properties of the Polynomials Defined by Morgan-Voyce," Fibonacci Quarterly, Vol. 4, Feb. 1966, pp. 73-81.
3. M. N. S. Swamy, "More Fibonacci Identities," Fibonacci Quarterly, Vol. 4, Dec. 1966, pp. 369-372。
4. M. N. S. Swamy, Problem B-74, Fibonacci Quarterly, Vol. 3, Oct. 1965, p. 236.
(Continued from p. 161.)
(Compare this problem with $\mathrm{H}-65$ and above solution formula with the formula

$$
\frac{2 x}{1-4 x-x^{2}}=\sum_{n=0}^{\infty} F_{3 n} x^{n}
$$

in the Fibonacci Quarterly, Vol. 2, No. 3, p. 208.)

