PASCAL'S TRIANGLE AND SOME FAMOUS NUMBER SEQUENCES

J. WLODARSKI
Porz-Westhoven, Federal Republic of Germany

The Fibonacci sequence has a well-known relationship to certain diagonals of Pascal's Triangle.

Another interesting relationship exists between the double numbers of Pascal's Triangle and each of two sequences well known in atomic and nuclear physics.

One of these two sequences represents the numbers of electrons (2, 8, $18,32,50, \cdots)$, and another - the numbers of nucleons $(2,8,20, \cdots$ and $28,50,82,126, \cdots$) in the occupied shell structures of atoms and their nuclei respectively.

The details are shown in the following figure.
every adjacent pair of numbers sums up to the number of electrons in the occupied shell of the atom, e. g. , $2+6=8$, $6+12=18$, etc. ${ }^{\text {. }}$
little "magic" nucleonic numbers

Pascal's Triangle (with double numbers)
*Remark. The definition does not exclude: $0+2=2$.

