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1. SUMMARY OF RESULTS
The solution of the Linear Diophantine Equation in n unknowns, viz.

CXy + CpXy + et FC X = ¢

with

n > 2 C1rCs** "5 Cps C

integers is a problem which may occupy more space in the future development
of linear programming., For n = 2 this is achieved by known methods —
either by developing ¢, /c; in a continued fraction by Euclid's algorithm or
by solving the linear congruence cixjy = c(cy)e For n > 2 refuge is usually
taken to solving separately the equation cyxy + cyXy = ¢ and the homogeneous
linear equation cyXq + C9Xg + eco + cXy < 0 and adding the general solution of
the latter to a special solution of the former. This is usually a most cumber-
some method which becomes especially unhappy under the restriction that none
of the unknowns xi(i = 3,°°*,n) vanishes, since in the opposite case the rank
of the Diophantine equation is lowered. The first part of the present paper,
therefore, suggests a method of solving the linear Diophantine equation in
n > 2 unknowns with the restriction X #0 (i=1,°*+,n) based on a modi-
fied algorithm of Jacobi-Perron; it is proved that if the equation is consistent,
this method always leads to a solution; numerical examples illustrate the
theory.

In the second part of this paper these results are being used to state
explicitly the solution of a linear Diophantine equation whose coefficients are
generalized Fibonacci numbers. The periodicity of the ratios of generalized

Fibonacci numbers of the third degree is proved using rational ratios only.
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Concluding, an explicit formula is stated for the limiting ratio of two subse-
quent generalized Fibonacci numbers of any degree by means of two simple
infinite series. For this purpose the author repeatedly utilizes results of his

previous papers on a modified algorithm of Jacobi-Perron.

2. THE STANDARD EQUATION

A Linear Diophantine Equation in n unknowns

(1.1) CiXy * CXptees v x =1, n T2
will be called a Standard Equation of Degree n (abbreviated S, E.n) if the

following restrictions on its coefficients hold:

a) ¢ a natural number for every i = 1,*¢+,n;

b)1<01<02<..,< Cn;
c) (eppegp®tycp) = 1 ;

1.2 . . L

(1.2) d) ci*ciﬂ.;l,]il, i+j=n;

e) (Cklyckz’ ey Ckn—1) = d- 1; kl’k] = 1,*°*,n ;

ki # kj ; (@, = Leee,n=-1),
A linear Diophantine equation in m unknowns with integral coefficients
(1.3)  agyy + agyy + *o0 + amym = A, (m > 1; a £0, i=1,""",m)
will be called trivial, if
(1.4) a, = 1 for at least one i ;
otherwise it will be called nontrivial. This notation is justified; for let be

‘aii =1 in (1.3). Then all the solutions of (1.3) are given by

Vi Yoo *°%s Vi g0 Vigqr **°0 ¥y 2O integers, 1 =i < m;

(1.5) - ) s

i = 2;(A -2y - ayy - e

- a, ., = a, ., =9 — 3
a1—1y1-1 a1+1y1+1 mym

and similar for i = 1, i = m.
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Let equation (1.3) be nontrivial; it will be called reduced, if
(1.6) (ag, a9, ", am,A) = 1
nonreduced, if
(1.7) (a3, 89,°**yam,A) = d> 1 .
With the meaning of (1.7), (1.3) can always w. 1. 0. g. be reduced by cancelling
d from the coefficients ay,°°°, am,A.
As is well known, (1.3) is solvable if
(1.8) (31’32s 0y am) A,
otherwise unsolvable.
Theorem 1.1. Every reduced nontrivial solvable equation (1.3) can be
transformed into an S, E. n,
Proof. We obtain from the conditiorns of Theorem 1.1.

(1-9) (313329 ey am3A) = 1; \31‘ = 1, (1 = 1,"',m) .

Substituting in (1.3)

(1.10) yl = Azl , (1 = 1,...’m)
we obtain
(1.11) agzy + agzy + eec +oa z =1,

Since (1.3) is solvable, wehave (aj, ag,*+°,am,)|A, which, together with (1.9),
yields

(1.12) (ag, ags***ram) =1 .

Let denote
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(1.13) g = wg i b =ay >0,

(1.14) Zig = U if b = -a >0 (k= 1,000, m).
In virtue of (1.13), (1.14), equation (1.11) takes the form

(1.15) byuy +bouy + bpuy = 13 (b, byt ,bm) = 1.
We can now presume, without loss of generality,

(1.16) 1<Dbi=by<=bg=+-*= by, .

Let bi be the first coefficient in (1.16) such that

(1.17) bi bks’ks >ji,s=1,--+,m-n; m-n m-i;i+l=< ks =m,

Putting
bk, = tb. , (s = 1,0¢¢,m - 1)
(1.18) s st
Ut tiuk1 ’ tzukz e o Ymen T Y5
we obtain from (1.15), (1.18)
biul + bzﬂz F oo + bi"iui—l + bivi + briur1 oo + brn—iurn-i = 1,

(1.19)

bi brl,brz,---,b ;1+1Srq$m, @=1,---,n-1) .

Tn-i

We shall prove

(1.20) (bl’bZ’ cee, bi“l,bi’brl’brz, ey, b

Suppose,

(bpr"“’bi—pbi:bri’b cecy b = d=>1;

Ty’ rn-i’

we would then obtain, in view of (1.17),
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(bistS' oo ’bi’bi+1’ eee, bm) =
(b3, g+« + , 151, by, bki’ ceo, bkm—n’ bri, ces, bl‘n—i)
(bi’bz’ cee ,bi_i,bi,bri,brz,' e ,brn_i) =d=>1 ’

contrary to (1,15),
If there exists a brq suchthat b, q bl‘p’ (p > q) thisprocess is repeated

as before; otherwise we obtain from (1.19) denoting

(1.21) bj = hj, (G = 1,°00,1); U = v (= 1,000,i=1)
brj = hi—!—j; Ury = Vigg 2 (G = ly,e°=yn-1) ,
hyvy + hpvy + eee + hivy +hi+1vi+1+'“ +hnvn =1,

1.22 — . _ . s .
(1.22) 1<hy<=hy<:-+<h ; (hy-+,bn) =1, hi*hj’ i> i

It should be noted that, in virtue of (1.18), the values of uy, uy 2 Ukys " " oUkyy

are obtained from those of v in (1,22) as follows

(1.23) ukf ©tty U, any integers; w, =v, - tug, -eee - tm—nukm_n.

If the hi (i =1,2+,n) of (1,22)do not fulfill conditions e) of (1.2), we choose
n different primes D, such that

(1.24) pi}(hihz-” h ', (@ =1,2°+,0); py>py>-+> pp,
and denote

-1 -1 .
(1.25) PPz e Py = P v, =P Pxi; C, =Dp; Phi’ i=1,ec°,n),

With (1,25) equation (1,22) takes the form (1,1). Since

-1
¢y = hypy P = hypspg*** pm > hy

we obtain
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(1.26) c; > 1
We further obtain, for i =1, and in virtue of (1,24)

_ -1 =1 -1
¢ = hyp; P<h, p P <h, P

(i=1,200,n-1) .

L City

(1.27)
et = ci+1

But
(7', +++, p'P) = 1, and (hyhy, ++, By) = 1,
and since p; }ll hjhy ¢+« h,,, we obtain, on ground of a known theorem
(hip;iP, h2p2_1s ) hnpx-;ip) =1,
so that

(1.28) (egsCps ***5 Cp) = 1

We shall now prove that the numbers ¢ (i = 1,°°+,n) from (1.25) fulfill the
conditions e) of (1.2). We shall prove it for one (n - 1) tuple of the ¢ the
general proof for any (n - 1) tuple is analogous. We obtain

-1 -1 -1
(C4sC9s ***5 Cpy) = (hyp; P, hypy P, ¢--, hn—ipn—ip) =

(hipoPg *** Pns ByPiP3 e+ Pns *+*s hy_gPy = PpoPp) = p, > 1.
By this method we obtain, indeed, generally
(1.29) (Cki’ Ckz’ N an-1) = Pk, > 1 Kk # kj for i #3j .

Thus Theorem 1,1 is completely proved,

A Linear Diophantine Equation in n unknowns which satisfies conditions
a),b),c),d) of (1,1) will be called a Deleted Standard Equation of Degree n
(abbreviated S'.E,n), Let
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+ + o0 -+ =
hivi h2V2 thn 1

be an S'. E,n, We have proved that every nontrivial reduced solvable Diophan-
tine equation can be transformed into an S', E, n, whereby n > 2,

An n-tuple of integers (xy,Xy,*°¢,xn) for which
(1.30) h1X1 + thz + eoe + han =1 N

is a solution vector of S', E, n; it will be called a standard solution vector, if
% #0 forall i =1,°°°,n, ‘As already pointed outin the Summary of Results,
we are aiming at finding a standard solution vector of S'.E.n, Since in the
S'.E.n condition e) of (1,2) it is not fulfilled, there must be at least one (n -
1)-tuple of numbers among the hy,---,h, which are relatively prime. We

shall presume, without loss of generality,

(1.31) (hy,hgy oo hyy ) =1

and let (xy,X,°°*,X,-y) be a standard solution vector of
hyvy + hgvy +eee Fhygvy 4 =1 .

Then (Xy,Xp,***,Xn-1,0) is a solution vector of the S',E,n, but it is not a

standard solution vector; such one would be given by the n-tuple,

(X1s Xpgo ey Xn—:[_thn: thn"i)’

t any integer, x _, # th .

Thus the problem for an S', E.,n which is not an S, E.n is reduced to find a
standard solution vector of an S', E,n - 1; this can be eitheran S.E,n - 1,
or only an S'.E.n - 1,

Theorem 1.2, An S,E,n has only standard solution veciors,

Proof, Let (xy,Xp,¢+¢,X[,0,0,°°+,0) be a solution vector of an S. E.n,
and let X £0, (i=1,*+,k). Itis easy toverify that k= 2, and let be k
=< n -1, The arrangement of the components of the solution vector canbe

assumed without loss of generality, Then
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(1.32) P A O
but since

(C15Cs "5 Cpo Ceppr ** Cn*i) = Py e
we obtain

(01302"°°9Ck) z pn > 1,

which is inconsistent with (1,32), This proves Theorem 1.2,

Let again

I}
juy

hivi -+ thg Feee hnvn
bean S E.n and
(1. 33) hivi -+ h2V2 Foeee + hnvn =0
its homogeneous part, We shall denote

thy vy 4 Vi2*** Vi,n-2 By

thy V5 1 Vz,2++ ¢ Van-2 Do

(1.34) Dby, ,hy) =
th v. v __c°* vV h
n N, 1,2 n,h-2 1
t, Vi i any integers,
3
(i=1,00,m5 j=1,000,n-2)
(1.35) Hk,n is the algebraic cofactor of the element ak,n .

For any v i the following identity holds
2

(1.36) D(hi" o :hn) = h1H1,n + hZHZﬂl Tee +han,n

[J une

0,
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Theorem 1,3, Let (X3, Xp,++,X,) be a solution vector of an §". E.n and
(Hi;n’ Hypsooe sHp n) be any solution vector of its homogeneous part; then

infinitely many solution vectors of S'.E.n are given by
(1.37) (% + Hi,n? Xg + HZ,n’ croyXntHpn) .

Proof, This follows immediately from (1.30), (1.36) adding these two

equations.

2. A MODIFIED ALGORITHM OF JACOBI-PERRON

Pursuing ideas of Jacobi [ 2| and Perron [3], the author [ 1,a) - q)] has
modified the algorithm named after the two great mathematicians (see especially
[ 1,m),n),p)]; one of these [ 1, p)] will be used in the second part of this paper.
In order to find a standard solution vector of an S'. E, n, the author suggests a
new modification of the Jacobi-Perron algorithm as outlined below,

We shall denote, as usually, by Vn—1 the set of all ordered (n - 1)-
tuples of real numbers (aj,ag,°<+,a,4), (0 = 2,3,***) and call Vn_1 the
real number vector space of dimension n - 1 and the (n-1)-tuplesitsvectors.
Let

0 0 _(0
(2.1) 2@ = @2, .. ag’zi)
be a given vector in Vn—i’ and let

(2.2) ™ = o, b7, B

be a sequence of vectors in V which are either arbitrarily given or

n-1’
derived from a(® by a certain transformation of Vi-r We shall now intro-

duce the following transformation

v - vH) _ 1 (V) _ ML, ) (V)
(2.3) Ta a agv) -bgv) (as by, N bn—1’ 1)

a?’) # b?’), v = 0,1,°°°
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If we define the real numbers Agv) by the recursion formulas

A?) =1 A§V) =0; G, v=0,1,",n-1 i#7v) ,

n-1i
(vin) _ (V) M AWVH) e g ves e =
Al Al +ij AV, =0, -y = 0,100
=1

then, as has been proved by the author and previously stated by Perron, the

following formulas hold

I Agv) A((,V+1) A(()v+n—1)
ALgv) A§v+1) A§v+n-1)

(2.5) DV:..... ..... ...2(—1)

A0 A A

A 31 (M (V)
(2.6) a0 = 1 =) L (i =1 eee,m-1; v=0,1,°°)
R r L,

)

(2.5) is the determinant of the transformation matrix of Ta''’; a further im-

portant formula proved by the author in [1, p] is

1 A(§v+1) A(§v+n—1)

2l A L (-1 )V @D
IR EES RN

(2.6a) aéo) A§V+1) v A§V+l’1—1)

(0 L+ . 4 (vin-1)
n-1 An—1 An—i

v = 0,1,°°°
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In the previous papers of the author the vectors b(v)

v)

were not arbitrarily
chosen, but derived from the vectors a by a special formation law. The
nature of this formation law plays a decisive role in the theory of the modified
algorithms of Jacobi-Perron. Both Jacobiand my admired teacher Perron used

only the formation law:

(2.7) b = [aM, G =1n-n V=010
where [x] denotes, as customary, the greatest integer not exceeding x. In
this paper the modification of Jacobi-Perron's algorithm rests with the follow-

ing different formation law of the b;v)

biv) = a§") if a£v) # [a§")];

(2.8) pM = o _ 1 g Y - [af")] :
wv) _ ) = 9 een = e
b = [a;] (k=2+*,n-1;v=0,1,°").
) _ . . .
It may happen that for some v a; ' = [ai ] for every i. In this case the

v)
i
as given by

algorithm with the formation law (2.8) must be regarded as finished, and b
= ai(v), i=1,"*",n-1)., The algorithm of the vectors a(v)
(2.3) is called periodic if there exist two integers p,q (p= 0, gq= 1) such

that the transformation T yields

(2.9) T =T, (V=ppt+tl,°"°)

(v)

In case of periodicity the vectors a v=0,p°e*,p-1) are said to form

(v)

the preperiod, and the vectors a (v=pp+1l,oc+,p+tq-1) are said to
form the period of the algorithm; minp = s and ming = t arecalled respect-
ively the lengths of the preperiod and period; s+t is called the length of the

algorithm which is purely periodic if s = 0.

3. A STANDARD SOLUTION VECTOR OF S.E.n

Let
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(3.1) CyXy + CoXpg Fees tepXy = 1

©) in VvV have the form

be an S, E, n; let the given vector a n—1

(3.2) a(O) = (agO)’”"a'L(lozl); a]fo) - Ci+1/01 i=1,-++,n-1).

The main result of this chapter is stated in

V)
from (3,2), obtained from (2.3) by means of the formation law (2.8); then there

Theorem 3,1, Let the vectors a be transforms of the vector a(o)

exists a natural number t such that the components of the vector a(t) are
integers, viz.
(3.3) a(t) = (agt), seey 3"1(21)’ ai(t) integers (1 = 1,***,n-1),.

Proof. We obtain from (2,8), since cy *cz and, therefore, [ago)] #
0)

a{®,
(3.4) b§°) = [eiy /c1] » =10+, n-1).

From (3.4) we obtain

1 .
¢ + = bi(o)ci + ci() s (ci(i) an integer) ,

(3.5)
0<c.(1)<c(1); e = cyp (i =1,0*+,n-1)
i n n

From (3.2), (3.4) and (3.5) we obtain

C. C. - C.(i)
N QRN O R G TR b B
i i Cy Cy ’
) _ 4, of? © _ 4,0 et
0 _ . (0 0 _ 1 _ :
(3.6) a§ -by’ = Ei— ; ai+1 _bk+1 = T, (k = 1,++<,n - 2)

and from (3,6), in view of (2,3)
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(3.7) ai(l) = ci(i)l M, d=1,0+0,n-1 ,

so that

WO < () Je, wanen

(5.9) b = [eff [0, i oD fofd,
0 f |

If cgl) = 1, Theorem 3,1 is true with t = 1; let us, therefore, presume that
cgl) > 1, Of the two possible cases, viz. I) cgi) ‘cgi) and II) cgl) * 02(1), we
shall first investigate case II). Here we obtain

ci(21 = bi(l)c§1) + ci(z) s (ci(z) an integer) ,
(3.9) Ofci(2)<cl(l2) ; cg) = cgi) s (1= 2,°°,n=-1);
0 < cgz) < 01(12)

We obtain, comparing (3,5) and (3.9)

(3.10) 0<cP <c <, .

Before investigating case I), we shall prove the following
Lemma 3.1,1, Let the vector a(v) in the modified algorithm of Jacobi-

Perron with the formation law (2,8) and the given vector (3.2) have the form

oM LW o
(3.11) a(V) = ——2——,——3-—,-..,.._11_ (V:O,l,"')
C§V) cgv) cgv)

then
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(3.12) e, e, o) = 1

Proof, The lemma is correct for v = 0, in virtue of (3.1) and (3.2).
Let it be true for v = k, viz,

(3.13) a(k) = -%E) (Cék), cgk)’ -o-, cr(lk))’ (cgk):cék)l'..’cl(lk)) =1 .
Ci

From (3,13) we obtain

c(k) = b(k)@§k) + c:.ka); ci(k+1)

i+ N integers, (i = 1,-++,n - 1),
0 < ci(k+1) - c§k)

(3.14)

Let us denote

(3.15) o = o

(3.16) (of™, of,0ex o) = a.

If d =1, Lemma 3,1.1 is proved; let us, therefore, presume
(3.17) d> 1,

We then obtain from (3.14), (3.15), (3.16)

(3.18) d cl(lkﬂ); cl(lkﬂ) = cgk) ; d cfE)i s (i=1,++,n-1,
so that
(3.19) e, o, oo, My 2 a1

but (3.19) contradicts (3,13), and the assumption that d > 1 is false which
proves the lemma, We shall return to case I) and presume
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(3'20) Cg) (1) . (1 = 1’2,.--,m)'

1+1

In view of Lemma 3,1.1, the restriction holds

(3.21) m=mn-2,

since, permitting m = n - 1, we would obtain

(Cgi), coe, cx(li)) = cgi) = 1 s

contrary to Lemma 3,1.1, It then follows from (3,20), in view of (2.8)

of = + nef? s o)) =p{ef?,

(1) - b(i) Cgi) + c(z) 1< 0(2)

(3.22) m+2 my m-+i -~ T"mH T
e (1) W . .0
Cmtoti bm+1+jci G+

o 2ey =< o) :

From (3.7), (3.22), we obtain, denoting

(3.23) ofth = o®

2~ ) = 1500 b - o,

1 2

(3.24) §n)+1 bfzil)ﬂ £n)+1 / o
20 _p@ @ / @
m+1+J m+i+j m+1+J

From (3,24) we obtain, in view of (2.3),

a.(z) = 0,
i

2@ @ / (2 G=1,

m+3 m+1+]

(i=1,°,m-1); a

e
m

(3.25)

ree,n-m-2); a

(]'_: s-uo’m) 3

< of);

j = 1yeee,n-m~2),

(j_ = 2’.-¢’m) H

= 1’-n-,n_m.—2) R

= 0@ /o)

m-+ 1’1

@)
n-1

1.
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The reader should well note that all the agz) (i=1,"*",n~1) have the same
denominator cr(f); for if ai(z) = 0 we put ai(z) = 0/01(12); if ar(lzz .= 1, we put

<2) ) / @

Combining (3.5) and (3.22), we obtain
(3.26) 1< Cgl)ﬂ < cgi) < ¢

From (3,25) we obtain, in view of (2.8) and recalling that

Oga)+1+j < cgi) = cr(lz), (= Lyesrsn-m-2) ,

(3.262) b = -1 bﬁ)l =03 (i=1,+,n-3) br(lz-)-i =1,
and from (3.25), (3.26a)

a® - p® =15 afd - =0, @=1,m-2;

(2) _ b(2) = (2)+ c @
(3.27) “m+1/ “n

(@ 2 2 (2) i = 1.eee.n-—m~-29):

n1)+] f-'n)'i'] 1(rn)+i+] Cn 2 (] - 1: R m 2) >

a(z) _ b(z) = 0

n-1 n-i °

From (3,27), we obtain, in view of (2.3),

o =0, @=1-0m-2; 2@ =0 O
(3.28) 1(2—1+] gl)-l-iﬂ/ @ ( = 1,eerpn-m=2)3

a(3) = 0; 4(3) =1

n-2 > “n-q

We shall now prove the formula
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(k+1) = i= . k+1 9

a; =0, 1=1,-°+,m -Kk); ag_k)ﬂ §n)+1/ (2) :
(k+1) — (2) 2) - .

(3.29) Im-kt4) T Cmtr / s = 1,000,n-m-=2);
I(lli-i};i_).i_,_s = 0, (8= 1,°°°,k~-1); (k+1) :

k = 2,"',m“’1 .

Proof by induction, Formula (3.29) is valid for k = 2, in virtue of
(3.28). Let it be true for k = v, viz,

+1 . k+
ai(v =0, (i=1ye°, m~-v); a;n—xir)ﬂ = £12r1)+1/ (@)
(k+1) = o® (2) i = f.ese.n—m=9) :
(3.30) am-v+1+j = m+i+3 s (= Lyeeryn-m-2);
+1 +
O g = 05 (8= Leee,v =15 a7 =1,
From (3.30) we obtain, in virtue of (2.8) and (3,22) ,
+1 +1 . . Vax)
(3.31) p{™ = o1 b =0, @ =1,-e,m-3) bl(l—i) =1,
and from (3.30) and (3,31),
+ + -+ + .
a7 - p(") = 1, aﬁfi) b =0, (=100, m-v-1;
g (V) _ pvH) @ (2) .
m-v+i m-v+i Cm+ ’
2 (V) (vH1) o) = J.eee.nn—m =2 :
(3.32) m-v-+i+ bm—v+1+] m+1+3/ s (= 1rern-m-2);
(v+1) _ . (VD) =0, (s = 1,0°°,v -1)

n-v-1+s n-v-1+s

2 (V) (vt) _
a " -b =0

From (3,32) we obtain, in view of (2,3),
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(vi2) _ {= 1eee.m-v-1:a¥? =0 (2)
a; =0, (=1, sM=~v-1)a m-y _ Cm+
(8.33) agi:r)ﬂ J%)+1+]/CI(12) » 0= Leee,m-me2)
+2 - = . vi2) _
-_Siviz—i—s - 0’ (S - 19' b ’V) s al(l"i ) =1

But (3.33) is formula (3,29) for k = v + 1; thus formula (3.29) is completely

proved. We now obtain from (3.29), for k = m - 1,
af™ = o af™ = @, o

(8.34) a(ﬁrr;ll) gl)ﬂﬂ/ (2) (G = 1,0eeyn-m=-2) 3
ar(11z11)n+s =0, (8 = 1,ece,m-2)3; aflmi) =1,

and from (3.34), in virtue of (2.8) and (3.22)

(3.35) p™ = _1; bW = 0, (= 1,-4+,n-3); bgfi) =1,

From (3.34), (3.35) we obtain

agm) - bgm) = 1; az(m) b(m) — C(z) (2)

m+i
.30 aff) -pf) = o) /e 6= Lenome
TP

and from (3,36), in view of (2.3)

a§m+1) gl)+1, 01(12) ; ag%l"'i) S1)+1+J /01(12)’ j = 1,°**,n-m-2);
(3.37)
(m-+1)

(m-+1) -
0 n-1

= 1 R
n-m-1+s ?

(s = L,r**,m-1); a
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From (3.37) we obtain, in virtue of (2.8) and (3.22),

(m+1) _

(3.39) b =0, @ =1+,n-2; b 1,

and from (3.37), (3.38)
a§m+1) _ bgmﬂ) - gﬂﬂ /c(z) :

(3.39) aﬁnﬂ) R gl)ﬂﬂ/ c® =1,0++,n-m - 2)
gﬁgﬁﬁs - émr;lH)ﬁs =0 =1, m)

From (3.39) we obtain, in virtue of (2.3)

a](mﬂ) 1(;).;.1.,.] l(frl)-l-i R (J = 1,' ce,n —-Mm - 2) 3
%) =0, (s=10,m; al™ = O /o0

n-m-2+s n-1i m+i

or
af™® = ol fof™ =1 m-m-g
G40 al™P =0, (s=1,-00,m; 2™ = M / o{mi)
§121)+1 - ci(m+2) s @ = Lieeeon-m-1); cr(f) = cr(lm+2) .

From (3.7), (3.9), we obtain
o) < bf) = o /ofds o < nfl = of) /o,

(G = lgoersn-2)

(3.41)

and from (3.41), in view of (2.3),

s

19
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2 ; (2 .
Gay  al = el /e, = nn-n off) =
We have thus obtained two chains of inequalities

0 < cgz) < cgi) < cy3 0= cgmﬂ) < cgi) < cy .

+
If c§2) or c§m D - 1, Theorem 3,1 is proved, Otherwise we deducefrom
(3.40) or (3.42), which show that the vectors a(z) and a(mﬂ) have the same
structure of their components, how the algorithm is to be continued. In any

case we obtain a chain of inequalities

(m,

< s e <= Ci <c:l <ci,
(3.43)
my = 2 if cgi) * céi); my = m+2 if Cgi) Oéi),

(m.)

and since the c; are natural numbers, we must necessarily arrive at

£
(3.44) of? =1, tem =1.

This proves Theorem 3,1.

We are now able to state explicitly the standard solution vector of the
S. E.n (3.1) and prove, to this end,

Theorem 3.2, A solution vector of the S. E. n is given by the formula

X = (Xi’ Xpgo o e ’XII); Xi = (—1)(t+1)(n-1)Bi,n .
(3.45)
(1 = 1,"' ’n)

where the Bi o are the cofactors of the elements of the nth row in the
]

determinant
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A A L ()

NGV GO TN G

Af

(3.46) D, =

e o @ e e 8 © 6 ©° ©o o

AT L) ()
n-i n-i n-1

In Dt + t has the meaning of (3,44) and the

A =0, 1, e, -1 V=t E200, tD)

have the meaning of (2.4) and are obtainable from the modified Jacobi-Perron
algorithm of the given vector a(o) from (3.2) by means of the formation law
(3.8).

Proof, We shall recall that, in virtue of the formation law (3.8) all the

numbers bi(v) and, therefore, the numbers
A =0, 5, e, V=0, 1, 00
are integers, For cgt) =1 we obtain

a® = o, off, oo, o) = @ oo, a0,

(G275 €375

(3.47)

b = ad o

34 i+1? @ = 1, n-1) .

Recalling formulas (2.4), (2.6), and (3.2), we obtain

Al 41 a0,

2 -
i A(t) T <t>A<t+J)

A0 Ly Oyl
1

Agt) Fy! b(t)A<t+J) - A(()t+n> ’
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so that

t
(3.48) ey /o1 = Al n)/ AP =1, -,
From (3.48) we obtain

t+n t+n
Cig = ClAi( )/A‘(J "

and, since (€590 00 50y) = 1,

(3.49) (cy c;ATD Agt'*m, NG /N G IO o) / Ay = g

1

and from (3.49), in virtue of a known theorem,

(01A3t+n)’ciAgt+n)’ CiAz(t+n), oo, ciAI(fj:l)) - Agt+n),

or

(3.50) ey A, AF), AL ATy o A ()

From (2.5) we obtain

AL NGO AN )

D,,, = INGERUN O RN ) I

(t+1) (n-1)

e o o o o 0 & e e © e e o

(t+1) (tv2) (t+n)
An—i An—i An—i
so that

(3.51) A, A, A LAy -y

[June
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From (3.50), (3.51), we obtain

(3.52) ey = AT,
and from (3.48), (3.52),

(3.53) Cpy = Ai(”n), @=0,1,++,0-1),

(3.53) is a most decisive result; we obtain, in virtue of it,

NG NGO IR G

(tH1) L, (t+2) ., 4 (tn-) -
(3.54) D, = AT A Af e| = (-3t @-)

(tH) \(42) ... ,(tn-1)
An—l An—i An—1 n

and from (3.54), denoting the cofactors of the ¢ in Dt+1 by Bi n i=1,"",n)
b}

n

3 B, ¢ = (VO
i,n"i

1=1

1y (n—
or, multiplying both sides of this equation by (-1) (t+1) (n-1) s

n

(3.55) D ((—1)(t+1)(n_1)Bi’n)c. =1,

i
i=1

which proves Theorem 3,2,

4, NUMERICAL EXAMPLES FOR SOLUTION OF S'.E.n and S,E.n

In this chapter we shall illustrate our theory with three numerical

examples,
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Let the 8', E. 4 have the form
(4.1) 53x + 117y + 209z + 300u = 1

The given vector a(o) has the components

(4.2) al® = 117/53; af® = 209/53; a{® = 300/53 .

[J une

Carrying out the modified Jacobi-Perron algorithm (2,8) for the vector (4.2),

we obtain the sequence of vectors

b = (@ 3, 5 ;
p® = (4, 3, 4
(4.3) p® = 0, 1, 1)
b® = @, 2 3 ;
p® = (1, 0, 2) .

We find that a(4) = b(4), so that
(4.4) t =4 t+1 =5,

From (4.3) we calculate easily, in virtue of (2.4)

AR =4 A = 5 A = 245 AP = 53,

11

AP =9 Al = 11; A =53 AP = 117,
(4.5)

b

DN~
<
!

= 165 AP = 20; A{D = 95, AP = 209 .

1l

AP = 23; A = 28 A{) = 136 A{) = 300,
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Since here (t+ 1)(n +1) = 5,3 = 15, the determinant (3.54) is of the follow-

ing form

4 5 24 53

(4.6) 9 11 53 117 _ _,

16 20 95 209
23 28 136 300

from which we obtain, developing Dy in elements of the last column
53+ 3 + 117+ 3 + 209 . (-1) +300. (-1) = 1.
A solution vector of (4,1) is, therefore, given by
(4.7) X = (3, 3, -1, -1).
Since X is a standard solution vector, there is not need to transform (4,1)
into an S. E. 4,
Let the S'.E.4 have the form

(4.8) 37x + 89y + 131z + 401u = 1,

Proceeding as before, we obtain for the Dt 1 of (3.54)

1 2 7 37
4.9) 17 89| _
25 131
10 22 76 401
which gives the solution vector for (4,8)
(4- 10) X = ("'6: -2, 0, +1)

Since this vector has a zero among its components, we have to transform the
S'. E, 4 of (4,8) into an S, E, 4, Here we choose
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(4.11) P=2.35.7 x=30x"3 y=42y'sz = 70z';u = 105u'.
Now the S', E, 4 takes the form of an S, E, 4, viz,

(4.12) 1110x" + 3738y + 9170z" + 42105u' =1,

Carrying out the algorithm (2,8) of the given vector

(4.13) 20 = (3738/1110, 9170/1110,42105/1110)

we obtain the vectors b(v)

@ = 3, 8 37 b =0, 2, 2; b® = (0, 1, 13
(4.14) @ = (0, 0, 1; B® = (29, 17, 54; P = (1, 1, 2) ;
p® = @, 0, 2 .
Here
t=6, t+1=7, (t+1)(n-1) = 21, Dy = -1 ;

after calculating the A?’), the determinant Dy from (3,54) becomes

3 272 5562 1110

(4.15) 10 916 1859 3738 | _ _;

25 2247 4560 9170
114 10318 20930 42105

which gives the standard solution vector of (4.12)
(4.16) X' = (198, -23, -10, -1),
and, in view of (4,11) the standard solution vector of (4.8)

(4.17) X = (5940, -966, -700, -105) ,

[June
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Let the S/E. 5 be
(4,18) 73x + 199y + 471z + 800u + 2001lv=1,
Proceeding as before, we obtain for the determinant (3,54)

4 21 21 22 73
11 57 57 60 199
(4.19) 26 136 135 142 471 = 1
44 230 230 241 800
10 576 576 603 2001

which gives the vector solution

(4.20) X = (0, -2, 0, 3, -1)

Since this vector has zero components, we have to transform the S'. E, 5 (4.18)

into an S, E, 5. Here we choose

(4.21) P =2.3.5. 7. 11; x = 210x"; y = 330y'; z = 462z'; y = 770u’;
v = 1155v' ,

The S, E, 5 takes the form

(4.22) 15330x' + 65670y' + 217602z' + 616000u' + 2311155v' = 1,

Carrying out the algorithm of the given vector

423 L0 _ (63670 217602 616000 92311155 °
(4.23) 15330 ° 15330 ° 15330 ° _ 15330

we obtain the vectors b(v)

p@ = (4,14,40,150; bP = (0,0,2,3); b® = (0,0,0,1) ;
(4.24) p® = (1,0,0,1); p® = (14,8,1,18; b® = (1,0,0,1) ;
@ = @,0,2,6); p@ = 1,1,0,2: b® = (0,2,0,9).
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Here

t =8, t+1 =9, t+ 1)n-1) = 36;

E

after calculating the A].EV), the determinant Dy from (3.54) takes the form

95 99 790 1681 15330
407 424 3384 7201 65670
(4. 25) 1349 1405 11213 23861 217602 |= 1 ,
3818 3978 31744 67547 616000
14323 14925 119100 253428 2311155

which gives the standard solution vectors of (4.22) and (4.18)

(4,26) X' = (1053, 26, -2, 13, -11) ,

(4.27) X = (221130, 8580, -924, 10010, -12705) .

5, THE CONJUGATE STANDARD EQUATIONS

DEFINITION, The Diophantine equations

CiXy F CoXyg + eee + o CpXy = cgv), Vv =1,,..,t - 1)
cj from (1.2) , G=1...,1n) 3
c§") from (3.11); t from Theorem 3,1,

will be called Conjugate Standard Equations.

In this chapter we shall find a solution vector for a conjugate standard
equation and prove, to this end,
i Theorem 5,1, A solution vector of the conjugate standard equation (5.1)

is given by the vector whose jth component is

(5.2) X = (-1)(V'+1)(n'1)]3§:’;1) ., W= Ly, t-1)
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where the B(Vﬂ)
j,n

3

are the cofactors of the elements in the nt][1 row of the

determinant
v+ v+ v+n-1
s BN TN (e S
(VH) (V) (v
(5.3) Ay Aq Aj

A (V-H) A (V+1) co e A(V+n-1)
n-1 n-1i n-1 n

If (x§°) , xéo), cee, x1(10)) is a solution vector of the standard equation

+
+
o
1l
=

CiXy + CoXp

then (5.2) is different from

(0) . (0)

(...’ Xj’ ---) = (..., Xj 01 ’o--)(j = 1,2’...’1»1).

Proof, As can be easily verified from the proof of Theorem 3.1,

the relation holds
(5.4) ailv_)i = c§"“1)/c§") ) (Vv =1, 2, +=*); c§°) = Cy

We shall first prove the formula

n-1
(5.5) AV + Z aJ.(V)ASVJfJ) = a(riiiar(le agi)i, (V=1,2,2") .
j=1

We obtain, for v = 1, in view of (2.4),

n-1

T aa) = g0 A - 0
j:I J n-1 n-i
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so that formula (5.5) is correct for v = 1. Let it be correct for v =k, viz,

n-1
(5.6) A(()k) e a;k)Agkﬂ) = ar(liziaﬁi,,, al(lk_)i’ =1,2,") .

i=t

From (2.3) we obtain

RON ( (k+1) k+1)> (k) [ = 2,eee,n-lik=1,2,0 )
(5.7) ]

oB - (1 / k+1>> + b

Rearranging the left side of the (5.6) by substituting there for aJ(k) the values
from (5.7), we obtain

n-i a(k+1) A(k+j)

k k), (k j— 0 k), (k
A0+ aOAlD L b( NG
j=2 an—i
_ 0,0 L ®
n-1 n-i n-1

The left side of this equation has the form

A(k+1) n-1 k+1) A (k+j) n-1
W , 0 Akt Bim1 B0 (k) , (k)
Ag” (k+1) F biAg * Z (k+1) " Z bj Ag
#n-1 j=2 n-1 j=2

k+1) +2n 1_(k+1) A(()k+j) " n-i 6 )
- i=2 %1 { (k) 5 (et
- < i AR ILAC
an—1 j=1
- (Al s k+1) (k+1)) / k) ) _ (b 5 (k) (kHH)

k+1 k+n) / (k1) _ ( Al (k+1) +Z (k+1) A(k+1+3)> / o (1)
n-1 °

=1
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We thus obtain

n-1
A8k+1) . Zaj(kH)A((’kHﬂ) /a(kﬂ) - agz oo a®

n-1 n-1 n-1 n-1 °’
=1
or
n-1
(k+1) (kty) (k1) _ () @ .. &)
(5.8) Ay + 2 Ay = Ay @n-1 a
=1

But (5.8) is (5.5) for v = k+ 1, which proves (5.5). From (5.4), (5.5), we
now obtain

(1)

-1
Cy V-1

n-i
v) W H) oS4
A+ D el af 0 ©
j:l i 2

n-i
(5.9) AV +Zaj(") A < cl/;?’) , (v =1,2,000) .
j=t

The reader should note that (5.9) holds for v = 0, too. We shall now return to
formula (2.6. a), viz,

1 AgV“‘l) cee A(()V+n_1)
a§0) A§V+1) cee A §v+n-1) .
(0 A (vHD) ... ,(vin-1) - =1
g Az A T n-1_(v) , (v+)
Aé ) +Zj=1 aj( )Ag

(0) (v+1) (v+n-1)
aply Bpnyl ot Any
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Substituting here the values of aj(O) from (3.2) and for

from (5.9), we obtain

n-1

A 4 Z a{af"™)

=

A ((]V‘H) A év+n—1)

A gvﬂ) A §v+n— 1)

A 2(v+1) A 2(V+n— 1)

A (v+i) A (v+n-1)
n-1 n-1

v(n-1)

cy/ cgv)

or, multiplying both sides by c; and interchanging the first and the last row

of the determinant,
A gV‘H)

(5.10)

From (5,10) we obtain

(vty) (v+1)
CBin " * CBgy T Feer

A ((;v+2) A (()v+n— 1)

A gvﬂ) A §v+n— 1)

A §v+z) . A §v+n—1)

A (v+2) A (v+n-1)
n-1 n-i

+ an

Cy
c
.} (-1) (v+1) (11—1)C gv)

C3

vH) _

é N (-1) (v+1) (n—i)C §v)
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or, multiplying both sides by (-1) (vHi) (n-1)

n
(5.11) Z cj(—1)("+1)(n") ijj’;” = M,
=1

(5.11) proves the first statement of Theorem (5,1). To prove the second state-
ment, we have to show that c§") cannot be a divisor of all the

x. = (_1)(v+1)(n—1)B§v+1)

i j,n ? G =1, -+, n)

To prove this, we recall formula (2.5), viz.
(5.12) p. = (@

v+

so that

A A e AR < (70D,

or

(5.13) ATV o+ AT g v e AT
From (5.13) we obtain

(5.14) (Xgs Xpy *#0sXp) = 1,

and since c{v) > 1 for v< t, the secondstatement of Theorem 5,11is proved,
It should be stressed that the case

Cj(:vi) = cgvz) = oee0 = cka)
is possible (1 < k < t), In this case we shall consider the conjugate equa-

tions cyxy +cpXp + oo o X = cgvj ), (j = 1,°°*,k) as different ones, since

each of them will provide a different solution of (5,1) for the same c?’) .
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We shall solve some conjugate standard equations of (4,12), viz.
1110x" + 3738y' + 9170z' + 4210u' = 1,
We calculate easily
(5.15) e = 408; ¢ = 2005 ¢ = 2195 ¢V =45 =25t =6,
Calculating the Agv) on basis of (4.14) we obtain a solution of
1110x' + 3738y' + 9170z' + 42105u' = 219, (v = 3)

X' = (-81, -2, 0, 1)
Similarly we obtain a solution of

1110x' + 3738y' + 9170z' + 42105u' = -4 (v = 4)

X' = (-15, 2, 1, 0)

It should be wellnoted that the solution vectors of the conjugate standard equa-

tions are not necessarily standard solution vectors,
6. GENERALIZED FIBONACCI NUMBERS

The generalized Fibonacci numbers are defined by the initial values and

the recursion formula as follows

P = B =0 = 7™ =0, B -0

n-1
(6.1) =y
) _ m) _
Fk+n = Fk+j 3 k+1,n = 2, 3,
j=0

The numbers Fi(n) (i=1,2,++) will be called generalized Fibonaccinumbers

of degree n and order i, They are calculated by the generating function
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oo

(6.2) A1 ex-x oo oY =E FM
i=1

Let denote

(6.3) fx) = 2 + b e 4 x-1,

f(x) from (6.3) is called the generating polynomial, This can be transformed
into

n

(6.4) f) = -2+ 1)/(x-1), x # 1.

The equation

(6.5) x-Dfx) = 2 —ox+1=0, x#1,

has 2 real roots and (n - 2)/2 pairs of conjugate complex roots for n = 2m
(m = 1,2,-++) and one real root and (n - 1)/2 pairs of conjugate complex
roots for n = 2m +1 (m = 1,2,+++), This is easily proved by analyzing the
derivative of f(x). The roots of f(x) are, of course, irrationals, From (6.2)

we obtain

(6.6) = 7 xpyx,eee,xm) s (v = 1,2,000)

where Ffrn) (Xqs Xgs*** 5 Xp) is a symmetric function of the n roots of f(x), It

will be a main result of the next chapter to findan explicit formula for the ratio

; (1) (n)
(6.7) Vl_l_];noo Fv+1 FV

In the case of the original Fibonacci numbers, viz, n = 2, this is a well-

known fact, As can be easily verified from (6,2), the F‘(,z) have the form

(6.8) Fgl)ﬂ - ([@2+_1>m/\/§ + eyt ((\/52— 1) n/\@) ’
) (m=0,1,’°").
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From (6.8) we obtain easily

(6.9) lim 7@ / F® = w5+ 1)/2 .

m_sco T mti

Of course, for generalized Fibonacci numbers, alimiting formula analogous to
(6.9) can be given by infinite series, as will be solved in the next chapter, We
shall use the notation

w @ ., ()
FV FV+1 Fv+n-1

() (n) (n)

(6.10) Df,n) = Fvr Ty 0 Fom

() (n) (n)
Fom-1 Fyin ° Fyon-

We shall prove the formula

(6.11) D ‘(fn) = (-1) (n(n-1)/2)+(v-1) (n-1)

Proof by induction, We obtain from (6,1)

an) an) . F1(1n)

o E . e

Dgn) = n-+i _

p® g L @

n n+i 2n-1
0 0 eo e 1
(n)
_lo o T ’
0 0 e.. 1 F® p@

n+i " nke

m ... (n)
Fn+11 F2n—1

-t
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(6.12) ng = (_l)n(n—i)/z

We further obtain from (6,1)

ITS APPLICATION TO GENERALIZED FIBONACCI NUMBERS

R (n:2’3,..o) .

(n) (n) ) ()
Fy Brr 0 Fomo Ty
) _ | oM () () () -
D= LN Fii Fin-1 v+n
(1) m ... (n) (1)
Fv+n—1 FV+1c1 Fv+zn—3 v-+n-2
(n) m ., (n) (n) n-1 ()
Fv Fv+1 Fv+n—:z (Fv—i * 2j=1 v-itj )
() m .., () (n) n-1  L(n)
Fv+1 Fv+2 Fv+n—1 (Fv +zj=1 FV+j ) -
n () () () n-i . (n)
Fx(r+)n—1 Fv+n Fv+2n—3 (Fv+n—z * 2j=1 v+n-2+j
(1) ® ... @) (n)
Fv Fv+1 Fv+n—2 Fv-i
n) m ... (n) (n)
Fx(r+1 Fv-Pz Fv+n—1 Fv _
(n) m .. (n) (n)
Fv+n-1 Fv+n Fv+2n-—3 FV+n-2
(n) () () )
FV—i Fv Fv+1 FV+n—2
n m ... (n)
- Fx(rn) F\(I+)1 Foa Fm-1
(n) () @® .,.
FV+n—2 Fv+n—1 Fv+n FV+2n—3

We have thus proved the formula

m _ _n-iym)
(6.13) D’ = (-)"DY,

37
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From (6.13) we obtain

n) - (1) iD(n) - (_1)n—1(_1)n—1D - . = (_1)(v—1)(n—1)D§n)

V-2

which, together with (6,12), proves (6.11). We have simultaneously proved
Theorem 6.1, A vector solution of the S'. E. n

(6.14) FO v F® g e e 70 k=1

is given by the formula

(6.15) x = (HEETVDIEDODE gy,
th

where the Bi,n are the cofactors of the elements in the n™ row of the deter-
minant (6,10).

We shall now turn to the periodicity of the algorithm for ratios of cubic
Fibonacci numbers and prove

Theorem 6.2, The Jacobi-Perron algorithm of the two irrationals

(6.16) a&o) = Vliranoo (F\(fs-?-s (3) 1) 3 (0) = 11m (F\(;?-L; (3) 1)

is periodic; the preperiod has the length S = 2 and the form

(6.17)

The period has the length T = 6 and the form

(6.18)

SO O O O o o o
oo = NN NN
-
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Proof, We shall first prove the following inequalities

(3) (3) (3) = vedy s
(6.19) Fv+3 < FVJNl < 2]5‘V+3 s (V= 3,4, ) s
(6.20) SF‘(f_{)_Z < F‘(S_LI < 4F$lz s Vv as above ,
From

r® = 5@ 5@ 250 5O 5 S g for v = o2

v+ v+3 V2 vH 7 Ty Ty :
we obtain
@ -~ O
FV+4 vt °

We further obtain

@ = ox® o O _ F‘(IS) 7@y

V4 v+3 v+3 +2 v+
but
B _ 0@ _ w6 - @ = e
Fv+3 Fv-kz Fv+1 Fv > 0, for v = 3,4,
therefore

(3) (3)
Fv+4 = 2Fv+3 ’

which proves (6,19). We further obtain

2O - O L p® . p®

v+ v+3 v v+
)| (3) (3) (3) (3)
= Fyp * FV+i * FV ) * Fv+z * FV+1

= o0 () (3)
= 2F;,, T 2F L+ FO

(3) (3) &) (3) (3 _ 6
21:‘v—!-z * (FV+1 * FV * Fv—i) * FV+1 Fv—i

_ awl(® (3 _ (3 .
= S3F T F o FV-'i ?

39
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but
B _ w6 - B (3)
FV+1 Fv—l FV + FV_2 >0 for v=3,
therefore
(3) - (3)
FV+4' 3FV+2 .
Since

® = @ 4 @y pO = @ . o9p® 4 5O — zO , g6
r® = 70 4504 szi = 2@ 4 zF‘(,_1 + Fff_z F‘(,) + F‘(IZZ

for v =3, we obtain

(3) (6) —)] (3) ()
Fom ~ ¥yl = B0 7 Fv—z = i oo

and, therefore, from the previous result

) — 4p®

Fv+4 v ?

which proves (20).

We shall now carry out the algorithm of Jacobi-Perron for the numbers

(6.21) af) = £l / v 5 afd = 70 / v, v =12,

Though the proof is carried out for the rationals

(3) (3) (3) (3)
Fors/ Fyta and Yo/ Fyia o

and not for their limiting values, the reader will understand, after having
read Chapter 7, that this is permissible,

We obtain from (6,19), substituting v -1 for v, and in virtue of v =
12,
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F‘(’s}_‘z <F(3) < ZF(g) ; 1<F‘(,3_3_3 F‘(flg <2,
so that
(6.22) p® = [a0] = 1,
From (6,20), we obtain
3 <F€314/F(3) <4,
so that
(6.23) pd = [af0] = 3,
From (6,21), (6.22), (6.23), we obtain
af? = 1/ @0 - b9 = 1/( <Fvi’3 r) - 1)
oo b -b;%/(aw o
=) T 0 _gp® /5@ 50
_ Ve Vv 3 3 3 .
| -? m) = (Foiy 355 /(Fv+1JrF )
F‘(f}r‘z v+

but, as has been proved before,

7@ _ 5B = F(3) + F(3)

v+ vH2
we thus obtain
(3) (3 )
W T e
(6.24) aq HE-P]
F(3) + F<3) F(3) + F(3)
v+ v+

Since

41
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(3), (3 (3 (3
0 <FV * Fv-2< Fv+1+Fv ’
we obtain

0 < E®D+50 /@0 +50) <1,

since further

1+ @D /@0 +50)), andsince 7@ < 7@ +70

we obtain

(6.25) bM = 05 b =1,

From (6.24), (6.25), We obtain
V@ - ) = @@ + 50/ @® + 50
af) - b = @0 - 50 - #0) /@0 120 -
0, 0, 50

we thus obtain, in virtue of (2.3)

7l r® + 5l

Y ) R i S A

(6.26) ald = ; af

O ) NG
v V-2 v V=2

From (6.26) we obtain, since
(3 (3) ©)] (3) (3) (3)
0< Fv_1< F, tE, 50 <FT /(FV +F,) <1,

and further, since

[June
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B8+ 501/ @30 = ) + 50,30 /s 22 <

= (op® @) ) ) (O RMEN G R
= @G 2RO, PR P FL) S HEL) =

2+ (FD 7 /@D 450 ) <3,

s0 that

(6.27) b = 0; bP = 2.

From (6,26), (6.27), we obtain, on basis of the previous results
1/ @ -pf) = @@+ 50 ) /79

af - b = (FD +50)/ #0150 )y -2 = @@ 470y @D 450 )

we thus obtain, in virtue of (2,3),

@) 4 g ‘ ® ,
I R e
F® e
V"i V—i
Since

p® 4@ < 5@ 4 @ 4 5O o @
V-3 V-4 V-3 V-4 V=2 v-i

we obtain
3 _ 3 _
o = (] =0 .
We further obtain

F® 1@ o p® L 5p® L 50
v V-2 v~-1 V-2 V=3

It

p® 4 @® 4 g0 L g0y, g0 g
V-1 V=2 V-3 V-4 V-2 v-4

= ZF(S) -+ F(3) - F(3) :
v-i V=2 V-4
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Therefore
(3 (3)
F7+F
(3) (3) (3) 3 . v V-2 .
ZFV_1 < FV + Fv-z < 3Fv-1 12 < F(S) <33
(6.29) v-i

b = 03 b = 2

From (6.28), (6.29), we obtain
1/ @ -y = 70 7 E@ +x0);
afd b = (@@ +50) /50 -2
- m® (3 () I —) (3 (3)
=Fy, - Fv—4)/ LML MR ey Mo

so that, in virtue of (2,3),

)] (3) (3)
(6.30) af) - 'Fﬁ - F‘(;S Y - Fv—ci)
: 3 3y 3 3 ‘
FV-s + FV-4 FV-3 * FV-4

From (6.30) we obtain
) = [af?] = 0,
and further
TPl = Pl EL ) = awdl s w0l )

1 v-5"

so that

(3) (3) (6 = (3) () (3)
¥y 1/ (Fys T Fyo) = 27 (Fv—s/ (Fylg  Fyog) ) o

or
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2 < (£ /(F(3) +19 )y <3,

which finally yields
(6.31) p® = 0; b = 2.
From (6.30), (6.31), we obtain
1/ @ by = @ ew®) RYL TR
afd —bf = 7@ s @0 50
so that, in virtue of (2.3),

7@ F(SZ + F(Sz4

q (B - V-5 () -
(6.32) aq F(g) + F(g) s 2y
-3 -5

From (6.32) we obtain

and further,
®® -+l /(r 0 5

F® 4 O

= (¢F® (3) 3) (3) (3) (3) _ v-g V-1
LI IR R O ))/(F TFL) =LA ——_FffZ“LF(:?

so that

which yields

45
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(6.33) p® = 0; b = 1.

From (6,23), (6.33), we obtain easily

o FOTO o x0 Lx

6) _ V 4 6 _ _V-3 V 5

(6. 34) aq = —F——(S) FI°P) ""'—F (3_)
A\ =5

From (6.34) we obtain
3
b = [af?] = 0,
and further

O 0 = 50 +or® 41 o gr® L gr® g0
v-3 V-5 V-6 V-

=6 V- 6 V-8

- 4F(3) +F(3) +F(s) < 4F(3)s < 41?(3) + 5F(3)

therefore,
4o 3) +F(3) )/ 3) <5,

so that
(6.35) p® = 0; b = 4
From (6.34), (6.35), we obtain

1/ @ - = ®? / @ +50)

o ) = @ 50 /50,

so that, in virtue of (2.3)

(3) (3) (3
(6.36) a('z) - Fv—7 + Fv-—s . a(?) _ Fv-s
' @ @ T 50 0

V-t

[June
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From (6,36) we obtain

and further

/(F@) cx ) = @O e x L p /(F<s) + ¥ )
=9+ (F()/(F(s) +F(3) D)
so that

(6.37) p =05 bl =1,

From (6.36, (6.37), we obtain

1/ @ -b0) = @@ 410 ) /(F(3) LR
A - b = 50 /(5 Fﬁ) +F(3) )

so that, in virtue of (2,3),

£ F® 4+ g0
(3) V—S . (8) = o N o
R R vk

V-t

Substituting in (6.38) for v the value

(6.39) v=u+7,
we obtain
(3) 6 G
(640 I ———F‘?T”:‘ﬁ
. - - : :
FO o ES r® + 5@

Comparing (6,26) with (6,40), we see that

47
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(6.41) a§8) = a?); aéa) = aéz) for u = ve>to |,

which proves the first statement of Theorem 6.2, The forms of the preperiod
(6.17) and the period (6.18) is verified by the formulas (6,22) and (6,23, 25,°¢-,
35, 37).

Applying Theorem (5,1) to the Jacobi-Perron algorithm of the numbers

(3) (3) ~(3) (3
Fv+3 Fv+2 ’ I‘v+4/ Fvﬂ

(this Theorem holds for any algorithm (2.3), as long as the formation law of the

bi(v) generates integers) and singling out the denominators

SUNEES S
Y = §® 4 5O
1 V-3 v-4 ?

we obtain, on ground of (6,41) and the vector equations a(g) = a(S), a(m) = a(4),

(atek) _ .(3) (3)
€1 L Fv—2—7k ’
(3+6k)
(6.42) cq F otk ?
(4+ek) _ (3) (3)
1 Fv—3—7k * Fv-4—7k

From (6.42), we obtain, in virtue of (5,3), where n = 3,

36k (46K’ 3
AT AT 50

(rek) (@t ) | _ () 3)
(6.43) Aj Aj F o P et E e v 2 Tk+3,
k), () ()
Al Al r

Substituting in (6.43) v = u + 7k, we obtain that a solution vector of the S'.E.3

+yF® 4 7@

(3)
(6.44) XF utsirk u+4+k

- (3
uretrk Fu * Fu—z ’

k:o’l,--o; u=3’4,-co
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is given by
- Ai’“ﬁk) A§4+6k) _ A§4+ek) Agg—l-sk)
(6.45) v = A§3+6k) A[()4+ak) _ A2(4+ek) A83+sk) ’
g = Ags-ksk) A£4+Gk) A 54+<;k) Agg—l-ek)

Substituting in (6.44) u = 5, we obtain that (6.45) is a solution vector of

3 3)
(6.46) XF%(I{H) + 'YFé(kH)H + ZF%?Lﬂ)sz = 3
We further obtain from (6,42), in virtue of (5.3),

A ‘()4—!—61{) A (()5”'61{) F(3)

v+2
(4tek) \ (5ek) . (3) - 70®
(6.47) Ay Ay FV +3 Fv—1—7k
(4+6Kk) (5+6k)  (3)
Ay As I‘V +4

Substituting in (6.47) v = u + 7k, we obtain that a solution vector of the S'.E,3

() ) @~ g0
(6,48) XF Cote T Y stk T AN Fu—i :

k=0,1,---;u:4, 5,“' o

is given by

- A§4+6k) A§5+6k) _ A£5+gk) A§4+6k)
L +
(6,49) y = A§4+Gk) A((f-l-ﬁ’{) —A§5+6k) A(()4 6k) :

5 = A54+6k) A§5+Gk} _ A85+6k) A£4+ek) ]

We obtain from (6,48), for u = 6, that the equation

©) (3) (3) =
(6.50) Foeryr TV deryre T APy T 2

has the vector solution (6,49).
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We further obtain from (6,42), in virtue of (5.3)

AS 5+6K) AS 6+6k) F(3)

v+2
(5+ek) , (6+ek) (3 | _ () (3)
(6.51) Ay Af Fv+3 - Fv—3—7k+Fv-4-7k :
(5+6K) (6+6K) (3) "
A2 AZ Fv+4

Substituting in (6,561) v = u + 7k, we obtain that a solution vector of

() )} ) = w3 @ .
(6.52) X otk T P hsamte * 2 g T Fulg T Fuog 3
K = 0,1, 5 U= 6,Tyeee
is given by

[June

x = A§5+ek) A§6+Gk) _ A§€+Gk) A§5+Gk); y = A§5+6k) A38+6k) - A§s+ek) A35+sk)

(6.53) ) - A35+6k) A£e+ek) _ Age+ek) A§5+“k) .

We obtain from (6.52), for u = 9, that a solution vector of

3 3 3 -
(6.54) XF;(L_H)M + yF§(L+1)+5 + zFé(Lﬂ)_FG = 6

is given by (6.53).

We shall give a few numeric examples for this theory, If weput k =1

in (6,50), we obtain

ng) + ng?é) + ng) = 2.,
From (6.49), we calculate easily

X = =205 y= -2 z =1
so that

(6.55) 77 - arl) - 20 = 2,
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We calculate easily
F{ = 927; 7 = 1705; P = 3136,

which verifies (6,55).
If we put k = 1 in (6,54), we obtain

wrfd +yef) o orf) = o
From (6.53), we calculate easily
x = -38 y = =29, z = 27 ,
so that
(6.56) o7 - 20r() - 387 = 6,

We calculate easily

I

) = 5768 FP = 10609; FY = 19513

which verifies (6.56).

7. THE GENERATING POLYNOMIAL
OF GENERALIZED FIBONACCI NUMBERS

The main purpose of this chapter will be the statement of an explicit for-
mula for the limiting value of the ratio

£
\!

£

v
of two successive generalized Fibonacci numbers of degree n > 2, To this
end, we shall investigate the generating polynomial f(x) from (6.3) recalling
a few results of the author stated in a previous paper [1.p)]. We obtain from
(6.3)
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f0)y = -1; f(1) =n-1>0;

n-i
f'x) = Z n- k)xn—i'_k >0 for x >0,
k=0

Therefore f(x) has one and only one real root w in the open interval (0, 1),
so that

(7.1) W T e w1 =0 0<wel .

We shall now carry out the modified Jacobi-Perron algorithm of the numbers

s
(7.2) aéo) = Zws_i , (s = 1,0°+,n-1) ,
i=0

0]

which are the components of the given vector a These have, therefore, the

form of (7.2), viz.

a§°) = w+1; aéo) = W2+ w1y eee; 31(10)1 = Wl WP w1,
Then the numbers aév) are functions of w, viz.
(7.3) 2 = 2w, s =1em-nv=0,1,000) .

For the formation law of the rationals b(sv) we use the formation law

(7.4) b =2, s =1eeem-nv=0,1,00) .

The author has proved in [1. p)] that under these assumptions the modified
Jacobi-Perron algorithm of the given vector (6.2) is purely periodic; the length

of the period is T = 1, and it has the form

(7.5) bg’) =1, (8= l,ece,n-1; v=0,1,000),
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As bhas been proved by the author in 1.p) , the formula holds
(7.6) w = VH%InOO (A(()V-i)/ASV) )

where the Agv) have the meaning of (2,4), From (2.4) and (7.5), we obtain

A =1,
AP =0 =78",

n-i
Since
n-1 n-1
A(()Il) A(O) +Z b(O) A(J) =1 + ASJ) =1,
j=1 j=1
we have
AD - @ -
n
We have thus obtained
(7.7) Al - Ff“) , (V= 1,2,000).

We shall now prove that (7.7) holds for any i>= 1, viz,

(7.8) ASV) - F‘(,n) , (Vv =1,2,000) .

Proof by induction, In virtue of (7.7) formula (7,8) is correct for v = 1,
2,°°*,n, Let (7.8) be correct for

(7.9) v=5kk+1, -, k+@m-1, k=1
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We shall now prove that (7,8) is correct for v = k+n, We obtain from (2.4)
and (7.5), (7.9)

n-1
A((,km) - Agk) + bj(k) A3k+j)
=1
n-1
= A(k) -+ A3k+:])
j=1
n-i
- N o M)
AR Fleti L
j=1

which proves formula (7,8).

Combining (7.6) and (7.8), we obtain the formula
= 1 (n) (n)
(7.10) w hmoo (FV_1 FV ) .

Theoretically (7.10) is a very significant formula and answers the questions
posed in (6,7). But practically it is of no great value, since neither w nor
F‘(,n) can be calculated easily because of lack of an explicit formula for either
of them, This problem will be solved in the forthcoming passages.

The polynomial Xn+1 - 2x+1, x # 1, hasthe same roots as the gener-

ating polynomial f(x) = R

“l4... +x-1. Particularly, it has one, and
only one, real root in the open interval (0,1), viz, w from (7.1). In a pre-
vious paper [1. p)] the author has proved the following

Theorem, Let be

(7.11) Fw) = whl-2w+1=20, 0<w<l,

If we carry out the modified algorithm of Jacobi~-Perron for the given vector

a(o) with the components
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(7.12) af;) =w®, (s = 1,++,n-1); ag’) = wh-o2,

then the algorithm becomes purely periodic; the length of the period is T = n
+ 1, and it has the form

n
0 0 -2
- 2
(7.13) t
0 0 0 2
If, for v > vy,
(v) n-1 | _(0)] | o (V)
WO ]
|| a8
then
(7.15) w = lim @a{"™? / Ay .

We thus have only to prove that (7.14) holds for the modified algorithm of Jacobi-
Perron of (7,12). We obtain from (2.14) and (7.13)

A((,o) = 1; ASV) =0, (v=1,°"+,n); A8n+1) = 1;

n
fn AP D TP 0
=1
n
AR - A0 Z.bj(Z) A - bn(z) AP - 2
j=t

We shall now prove
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A (()n+1+v) _ oY

(7.17) 2, (v=0,1,""",1).

Proof by induction, (7,17) is correct for v = 0,1, 2, in virtue of (7.16).

Let it be correct for v = k, viz.

AR gk

(7.18) 27, k=0,1,+--,n-1) .,

From (7.18) we obtain

n
n+itk+) _ (kH k+1) |, (k) _ o (kH) , (0K
Af ) = Al )+Zb§ ) Al - brg ) A )

=1

which proves (7.17), We further obtain from (7.16), (7.17)

n
A (()n+1+n+1) = A SHH) + Z bj(n+1) A 3n+1+3)

=1

= 9 + p@H) A3n+1+n) = 9 +pO® A(()n+1+j)
n n

_ n _ n+1_| m+ent+) ] _2n+1  on .

= 24 (-2) 2" = 2-2" 5 |A; >S5 5 2, n2
++n+ + +1H

_IA(()ninl) . 2n 1_|A3n1n)|'

(7.19) > 2

We now deduce from (7.17), (7.19),

(7.20) for v =0,1,"**, n+1

n+i-+v 2n + 1 n+v
| A0 T:IIAé )

and shall prove generally

(7.21) I AP , (v =0,1,000) .

2n + 11, (ntv)
> ‘———‘n_l_l lAO
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b

Proof by induction, Let be

(7.22) |A§“+1+V)lz ol EAén“LV)E , for v=1Kkk+1,--,k+n-1,

(7.22) is correct for k = 0,1,2, in virtue of (7.20). We now obtain, in virtue
of (2.4), (7.13),

n
n+i+ktn k+n) | (t+k) , (k+tn+j
N )= A T p )
=t
_ A{(}k—#n) n TOI(lkera) A((jk+n+n)

k-+n)

- A g k+n-+n)

* zAé s

may Ll o fage] -y,

But from (7,22) we obtain

2
m+k) n+1 (n+k+1)l ( n+1 (k)
lAO = 2n+1‘A° = \2n+1> 3A9 |
n
n+1 (k-+n-+n)
= (Zn + 1) !AO ‘ :
A(k+n)‘ _(n+1\" ﬂ A(k+n+n}i
(7.24 4] = (ara) 140 :
/
From (7.23), (7.24) we obtain
n\
n+i+kin) g {2t § (k+n+n)l
(7.25) ] A | = (z - {2“1) } Al :
/
We shall now prove
\n
n+1 Z2n + 1 . - q
(7.26) 2 - (m> > TET e for n = 3,4,

We have to prove
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n n
n-+1 1 2n +1
2— = — —— -
(2n+‘1> 2 Ty7c or n + 1< (—-———n+1> or

But, for n= 3,

We shall prove

or
2 3y -
n n+1+n(n 1)
n 2(n + 1)2
or
2 -
1= zl_l"' n'(n D )
n 2(n + 1)2
or
2 -
nils °0-D s om+ 1)< nlm-1) .
2(n + 1)2
But, for n = 3,
nfm-1)= 2n2 = 6n = 2n + 4n = 2n + 12> 2n + 2
= 2mn+1).

Thus (7.26) is proved.,
From (7,25), (7.26), we obtain

l Ao(n +1+k+n)

.2+l lAgk+n+n)

n+1 ’

[J une
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which proves (7.21).
From (7.21) we obtain

(7.27) |A kJ’V)I > (r‘lnf ) |AV), (k+v > n+1) .

We shall now prove formula (7.14). We obtain, since

|aj(°)|=wJ <1, G=1,,n-1) ;
[a(o)l=2—wn, n 2> 3,
n

e i i R P
RIS
n

@ - W) [al )]

But from (7.22) we obtain

IA§V+j)| < (’z%%)n_j |A3v+n)|

therefore

lA(()V)I +Z§l=_f |a]_(0)| |A3V+J')| ZJ o C;lill)n]
milre

2 - w
n n
nt+1 nt1 _ n+1) )
_ 2n+1(1"(2n+1) )_ (+ 1) (1 \2n+1
n+1 n _ ’
1—2n+1>(2—w) (2 -w)n

so that

I (V)|+Z;1 ! Ia(O)HAVﬂ)I

n+1) 1_<n+1>n
o>|| <v+n>| S - L

(7.28)
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We shall now prove

n

(7.29) m+1)/n < 2-w, n>3,
We obtain from
F) = & - ox 41,
FO) =1, F1) = 0; TF'(x) = m+1)x -2;

therefore

F'(x) < 0 for 0<x < 2/n+1) ,

F'(x) > 0 for <> 2/m+ 1) .

Since w 1is the only root in the open interval (0.1), we obtain

(7.30) n 2

From (7.30) we obtain

It is easy to prove the following formula

1=

+1< 2
n n+ 1

With (7.31) and the previous result (7.29) is proved. From (7.28), (7.29), we
obtain
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R ol | ' O (322)

(7.32) !a(o) E Agv-m) on + 1
n

But (7.32) verifies (7.14) with

n
Qo _ _fn*t1
(7,uu) m 1 (211‘*‘ 1 < 1 .

We shall use a formula for the Agv) of an algorithm with the period (7.13)

proved by the author in [1.p)], viz.

5]
((s+i)(nti)+k) _ . Kk im+1)+s+k-i) i
Ao b Z im+1y+k /7
b= 2 2 = _21’1+1; (§=0,1,°+°; k=0,1,°",n)

Writing in formula (7,15) v = (s + 1)(n + 1) + 1, we obtain

w = s@méé(ﬁwnﬂ» /Ag(s+1)(n+1)+1)>

and, using (7.34),

s ifm+nits-i) mhi
(7.35) w = _lim L= D ( (£ I )2

STm00 58 , ifmFDi+s+ 1 -1\, ()i
2X1=0(1)< m+1)i+1 )2

Comparing (7.10) and (7,35), we obtain the wanted relation

() s ifm+Dit+s -1, (nt)i
Pl _ 2= 1) ( (m + )i )2

(n) 2 8 % § , Lif m+Di+ts+1 -1\ (mtni
FS oo . (1) ( M+ 1)i+ 1 )2
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