PYTHAGOREAN TRIADS OF THE FORM X, X+1, Z DESCRIBED BY RECURRENCE SEQUENCES

T. W. FORGET and T. A. LARKIN Lockheed Missiles & Space Company, Sunnyvale, California

The term Pythagorean Triples or Triads is applied to those integers which describe all right triangles with integral sides. The sub-class which is the subject of this paper, is restricted to those of sides x, x + 1, $\sqrt{2x^2 + 2x + 1}$. It is obvious that the smallest such triangle has sides 3, 4, 5. The problem is to find a general method of sequential progress through the family of all such triangles. In the course of this development, and consequent to a solution of Pell's equation, it is shown that these triangles bear a curious relationship to a series which, with the exception of a single coefficient, is identical with the Fibonacci series.

It can be shown that in a right triangle $x^2 + y^2 = z^2$, primitive solutions are given by integers a, b such that $x = a^2 - b^2$, y = 2ab and $z = a^2 + b^2$ where a > b, and (a,b) are relatively prime. This paper will be concerned with triangles in which $y = x \pm 1$, or $x^2 + (x \pm 1)^2 = z^2$, the primitive solutions of which also take this form.

A. If x is odd and

 $x = a^2 - b^2$ and x + 1 = 2ab,

then

$$-1 = a^{2} - 2ab - b^{2}$$

$$-1 = a^{2} - 2ab - b^{2} + b^{2} - b^{2}$$

$$-1 = a^{2} - 2ab + b^{2} - 2b^{2}$$

$$-1 = (a - b)^{2} - 2b^{2}$$

B. If x is even and

June1968PYTHAGOREAN TRIADS OF THE FORM X, X + 1,ZDESCRIBED BY RECURRENCE SEQUENCES

$x = 2ab$ and $x + 1 = a^2 - b^2$	(Note: In A, x was odd and	
	in B, x is even in order to	
	account for all possibilities.)	

~

then

$$+1 = a^{2} - 2ab - b^{2}$$
$$+1 = (a - b)^{2} - 2b^{2}$$

Let p = a - b and q = b, then by A and B above

(1)
$$\pm 1 = p^2 - 2q^2$$
.

Equation (1) is an example of Pell's equation. By inspection, the smallest integral solution greater than zero of this equation is p = 1, q = 1.

Equation (1) can be factored into

$$(p - q\sqrt{2}) (p + q\sqrt{2}) = \pm 1$$

which, when raised to the nth power, becomes

$$(p - q\sqrt{2})^n (p + q\sqrt{2})^n = \pm 1$$

Specifically

$$(1 - \sqrt{2})^n (1 + \sqrt{2})^n = \pm 1$$

since p = 1, q = 1 is a solution of equation (1). Now let

(2)
$$p_n + q_n \sqrt{2} = (1 + \sqrt{2})^n$$

then

(3)
$$p_n - q_n \sqrt{2} = (1 - \sqrt{2})^n$$

PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z

Then, by solving these simultaneous equations,

(4)
$$p_n = 1/2 \left[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right]$$

(5)
$$q_n = \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right]$$

Since p = 1, q = 1 is the smallest solution of equation (1), then the general solution is given by (2) or (3) above and, therefore, by (4) and (5). (This can be found in most texts on Number Theory.)

Adding equations (4), (5)

.

96

$$p_n = 1/2 \left[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right]$$

(5a)

$$q_n = \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right]$$

$$\begin{split} p_n + q_n &= \frac{1}{2\sqrt{2}} \left[\sqrt{2} (1 + \sqrt{2})^n + \sqrt{2} (1 - \sqrt{2})^n + (1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right] \\ &= \frac{1}{2\sqrt{2}} \left[(\sqrt{2} + 1) (1 + \sqrt{2})^n - (1 - \sqrt{2}) (1 - \sqrt{2})^n \right] \\ &= \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1} \right] \end{split}$$

(6) $p_n + c_n$

$$p_n + q_n = q_{n+1}$$

Since $p_n = a - b$ and $q_n = b$, then

$$a = p_n + q_n$$

 \mathbf{or}

$$a = q_{n+i}$$

and, of course,

$$\mathbf{b} = \mathbf{q}_n$$

June

DESCRIBED BY RECURRENCE SEQUENCES

Equation (2) can be rewritten

$$p_{n+1} + q_{n+1}\sqrt{2} = (1 + \sqrt{2})^{n+1}$$

$$= (1 + \sqrt{2})^n (1 + \sqrt{2})$$

$$= (p_n + q_n\sqrt{2}) (1 + \sqrt{2})$$

$$= p_n + p_n\sqrt{2} + q_n\sqrt{2} + 2q_n$$

$$= (p_n + 2q_n) + \sqrt{2}(p_n + q_n)$$

But

1968]

(7)
$$p_n + q_n = q_{n+1}$$
$$\therefore p_{n+1} = p_n + 2q_n$$

Rewriting equations (7), (6) and subtracting,

(7.a)
$$p_{n-1} = p_{n-2} + 2q_{n-2}$$

(6.a)
$$q_{n-1} = p_{n-2} + q_{n-2}$$

(8)
$$p_{n-1} = q_{n-1} + q_{n-2}$$

Now rewriting equation (6)

(6.b)
$$q_n = p_{n-1} + q_{n-1}$$

Substitute equation (8)

(9)
$$q_{n} = q_{n-1} + q_{n-2} + q_{n-1}$$
$$q_{n} = 2q_{n-1} + q_{n-2}$$

In both A and B above, the term 2ab was used, once for x and once for x + 1. If p and q satisfy $p^2 - 2q^2 = -1$, then x + 1 = 2ab. If p and q satis fy $p^2 - 2q^2 = +1$, then x = 2ab. Equations (2) and (3) state that the only way

.

98 PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z

for the negative portion of equation (1) to be satisfied is for $(1 - \sqrt{2})^n$ to be negative. If $(1 - \sqrt{2})^n$ is negative, then x + 1 = 2ab; if $(1 - \sqrt{2})^n$ is positive, then x = 2ab. Since $(1 - \sqrt{2})$ is a negative term $(\sqrt{2} > 1)$, $(1 - \sqrt{2})^n$ is positive when n is even and negative when n is odd. Now the formula for one side of the triangle becomes

(10)
$$2q_nq_{n+1} = \begin{cases} x \text{ for even values of } n \\ x+1 \text{ for odd values of } n \end{cases}$$

We have now developed a recurrence relationship for the q terms in relation to previous q terms (equation 9).

Except for the coefficient 2 of q_{n-1} , this is the Fibonacci Series. Note that in this same manner the expression $p_n = 2p_{n-1} + p_{n-2}$ can also be proved.

Until now nothing has been formulated concerning the hypotenuse or z term of the Pythagorean Triple. Since squaring and taking the root of very large numbers is difficult, it would be advantageous to have a recursive formula for the z terms. We propose to prove that

(11)
$$z_n = q_{2n+1}$$

is such a formula. Then any Pythagorean Triad of the form x, x + 1, z can be found recursively by using equations (9), (10), and (11). Further, by use of equation (6), any two consecutive q terms can be found and the sequence proceeds from there. See Appendix A. Proof for equation (11) follows.

From A and B above, two conditions are possible, either $x = a^2 - b^2$ and x + 1 = 2ab or x = 2ab and $x + 1 = a^2 - b^2$. In either case,

$$x^{2} + (x + 1)^{2} = (a^{2} - b^{2})^{2} + (2ab)^{2}$$
.

As stated before,

$$2ab = 2q_n q_{n+1}$$

for the nth triad. Also,

June

DESCRIBED BY RECURRENCE SEQUENCES

$$a^2 - b^2 = q_{n+1}^2 - q_n^2$$

 since

1968

$$a = q_{n+1}$$
 and $b = q_n$

Then,

$$\begin{split} \mathbf{x}^2 + (\mathbf{x} + \mathbf{1})^2 &= \left(\mathbf{q}_{n+1}^2 - \mathbf{q}_n^2\right)^2 + \left(2\mathbf{q}_n\mathbf{q}_{n+1}\right)^2 \\ &= \mathbf{q}_{n+1}^4 - 2\mathbf{q}_n^2\mathbf{q}_{n+1}^2 + \mathbf{q}_n^4 + 4\mathbf{q}_n^2\mathbf{q}_{n+1}^2 \\ &= \mathbf{q}_{n+1}^4 + 2\mathbf{q}_n^2\mathbf{q}_{n+1}^2 + \mathbf{q}_n^4 \\ &= \left(\mathbf{q}_{n+1}^2 + \mathbf{q}_n^2\right)^2 \\ \mathbf{\sqrt{x}^2 + (\mathbf{x} + \mathbf{1})^2} &= \mathbf{z}_n = \mathbf{q}_{n+1}^2 + \mathbf{q}_n^2 \end{split}$$

To prove equation (11) all that remains is to prove that

 $q_{2n+1} = q_{n+1}^2 + q_n^2$

To do this we will prove by induction on k that

$$q_{2n+1} = q_{k+2} q_{2n-k} + q_{k+1} q_{2n-(k+1)}$$

If k = 0

If k = 1

$$q_{2n+1} = 5q_{2n-1} + 2q_{2n-2}$$

Notice now that q_{2n+1} is represented in terms of

$$(q_3 = 5, q_{2n-1}), (q_2 = 2, and q_{2n-2}).$$

Assume that the $\, {\bf k}^{th} \,$ relationship is of the form

$$q_{2n+1} = q_{k+2} q_{2n-k} + q_{k+1} q_{2n-(k+1)}$$

Certainly the first relationship is true as we have just shown. Assume the \mathbf{k}^{th} relationship is true. Then,

$$q_{2n+1} = q_{k+2}q_{2n-k} + q_{k+1}q_{2n-k+1}$$

From equation (9) we know

$$q_{2n-k} = 2q_{2n-k-1} + q_{2n-k-2}$$

Then

$$q_{2n+1} = q_{k+2} \left[2q_{2n-k-1} + q_{2n-k-2} \right] + q_{k+1}q_{2n-k-1}$$

$$q_{2n+1} = 2q_{k+2}q_{2n-k-1} + q_{k+2}q_{2n-k-2} + q_{k+1}q_{2n-k-1}$$

$$q_{2n+1} = q_{2n-k-1} \left[2q_{k+2} + q_{k+1} \right] + q_{k+2}q_{2n-k-2}$$

Since

$$2q_{k+2} + q_{k+1} = q_{k+3}$$
,

$$q_{2n+1} = q_{k+3}q_{2n-k-1} + q_{k+2}q_{2n-k-2}$$

This is the $(k + 1)^{st}$ relationship and this proves the general equation inductively. Specifically, when k = n - 1,

1968]

DESCRIBED BY RECURRENCE SEQUENCES

 $q_{2n+1} = q_{(n-1)+2} q_{2n-(n-1)} + q_{(n-1)+1} q_{2n-(n-1)+1}$

 $\mathbf{q}_{2\mathbf{n}+1} = \mathbf{q}_{\mathbf{n}+1} \mathbf{q}_{\mathbf{n}+1} + \mathbf{q}_{\mathbf{n}} \mathbf{q}_{\mathbf{n}}$

 $q_{2n+1} = q_{n+1}^2 + q_n^2$

Then this completes the proof for equation (11).

102 PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z APPENDIX A

 ${}^{q}\underline{n}$ $2q_{n}q_{n+1}$ } x = 4 = 3 $\mathbf{x_{i}}$ 1 $\mathbf{2}$ 20 \mathbf{x}_2 = 205 \mathbf{z}_1 = 120119 \mathbf{x}_3 = 12696 696 = \mathbf{x}_4 \mathbf{z}_2 29= 4060 = 4059 \mathbf{x}_{5} 7023360= 23360 \mathbf{x}_{6} 169= \mathbf{z}_3 137904137903 = X_7 408803760 803760 \mathbf{x}_8 = = 985 \mathbf{z}_4 4684660= 4684659Хg 237827304196= 27304196 x_{10} = 574**1** x₁₁ \mathbf{z}_5 159140519 159140520 = = 927538920927538920 \mathbf{x}_{12} 1386033461= 5406093004 5406093003 \mathbf{z}_{6} = x_{13} 80782315090191003150919100 = x_{14} = 195025 z_7 183648021600x₁₅ = 18364802159947083210703875854721070387585472= x_{16} $\mathbf{z}_{\mathbf{8}}$ 1136689 = 6238626641380 = 6238626641379 X₁₇ 2744210 36361380737780 36361380737780 x₁₈ = 6625109 \mathbf{z}_{9} = 211929657785304 x₁₉ 211929657785303= 1599442812352165659740401235216565974040 x_{20} = 38613965

June

93222358

225058681 z₁₁ =

 $z_{10} =$

n

1

 $\mathbf{2}$

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

DESCRIBED BY RECURRENCE SEQUENCES

1968]

APPENDIX A (Continued)

<u>n</u>		q	$\frac{2q_n q_{n+1}}{2q_{n+1}} = \begin{cases} x \\ y \\ y \end{cases}$
24		54339720	
25	z ₁₂ =	1311738121	
26		3166815962	
27	z ₁₃ =	7645370045	
2 8		18457556052	
29	z ₁₄ =	44560482149	
30		107578520350	
31	z ₁₅ =	259717522849	
32		527013566048	
33	z ₁₆ =	1513744654945	
34		4074502875938	
35	z ₁₇ =	9662750406821	
36		23400003689580	
37	z ₁₈ =	56462757785981	
38		136325519261542	
39	z ₁₉ =	329113796309065	v
40		794553111879672	
41	z ₂₀ =	1918220020068409	

PYTHAGOREAN TRIADS OF THE FORM X, X + 1,Z DESCRIBED BY RECURRENCE SEQUENCES

June 1968

APPENDIX B

x	x + 1	Z
3	4	5
20	21	29
119	120	169
696	697	985
4059	4060	5741
23360	23361	33461
137903	137904	195025
803760	803761	1136689
4684659	4684660	6625109
27304196	27304197	38613965
159140519	159140520	225058681
927538920	927538921	1311738121
5406093003	5406093004	7645370045
31509019100	31509019101	44560482149
183648021599	183648021600	259717522849
1070387585472	1070387585473	1513744654945
6238626641379	6238626641380	9662750406821
36361380737780	36361380737781	56462757785981
211929657785303	211929657785304	329113796309065
1235216565974040	1235216565974041	1918220020068409

* * * * *