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1. INTRODUCTION 

We establish here a characterization of the Fibonacci and Lucas numbers 
while determining the units of the quadratic field extension Q( \/5) of the 
rational field Q. Using an appropriate norm on Q(\/E)9 we also find all solu-
tions to the Diophantine equation x2 - 5y2 = ±4 and solve a certain binomial 
coefficient equation. Except for the definitions of basic algebraic structures, 
the treatment is self-contained, and so should also serve as a brief introduc-
tion to algebraic number theory. We hope the reader sees the beauty of one 
branch of mathematics interacting profitably with another, wherein both gain. 

For the definitions of group, ring, and field, we refer the reader to [ l ] . 
Let u be an element of the field of complex numbers C. We say u is an 
algebraic number if there is a polynomial 

(1) p(x) = a n x n + a ^ x 1 1 " 1 + • • • + ajx + a0 (a. G Q, an ^ 0) 

with coefficients in Q not all zero which is satisfied by u, i. e9 , such that 

p(u) = a u + a u + • • • -f-ajU + ao = 0 . 

Thus Vi" and i = V^ l" are algebraic numbers, while rr is not Among,all 
the polynomials satisfied by u, there is one of least positive degree, say of 
the form p(x) in (1). Since p(u) = 0 implies a^pfu) = 0, we may choose 
p(x) with leading coefficient 1, i. e . , so that p(x) is monic* The monic 
polynomial of least positive degree satisfied by u is called the minimal poly-
nomial of u. For example, the minimal polynomial of |V2~ is x2 - -jj. The 
reason we insist that the leading coefficient of p(x) be 1 is that with this pro-
vision the minimal polynomial is unique (see [ l , Chap. 14]). 

An algebraic number is said to be an algebraic integer if its minimal 
polynomial has integral coefficients. For example, any rational r is an 
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algebraic number (it satisfies x - r) , but among the rationals only the integers 
are algebraic integers (the reader should prove this). For this reason the 
ordinary integers are sometimes referred to as rational integers8 An alge-
braic number u ^ 0 is called a unit if both u and u™1 are algebraic inte-
gers,, As an example* -1 and i are units. A unit should be distinguished 
from the unit (multiplicative identity) element 1 of the field* although the unit 
element is also a unit 

3. THE QUADRATIC FIELD Q(V5) 

Denote by Q(\/§) the smallest field contained in the field of real num-
bers R which contains both Q and V5. We first expose the form of the 
elements in Q(\/5). 

Theorem 1. Q(\/5) = | r + sV5 |r , s E Q } . 
Proof. Denote the right side in Theorem 1 by S. Then since the e le-

ments of S are formed using the field operations from those in Q and \ZE~9 

we have S C Q(\/5). But we claim S is already a field, Clearly it inherits 
the necessary additive and associative properties from Rf and the product of 
any two elements in S is easily shown to be again in S. Hence we must only 
show the existence of inverses in S. If r + s\/5~ ^ 0, then 

1 _ = rj^s/5 = _ r / ^ ^ _ \ V ^ e s . 
r + s \ /5 r2 - 5s2 r2 - 5s2 \ r2 - 5 s 2 / 

Since Q(\/5) is the smallest subfield of R containing Q and \/E9 we have 
Q(\/5) C S. Thus S = Q(V5). 

Because of the irrationality of V^T we note that two elements in Q(\/5) 
are equal if and only if they are equal componentwise* i0 e. , a + b v 5 = c + 
dV5 for a , b , c , d G Q if and only if a = c and b = d. QO/5) is called a 
quadratic field because it is formed by adjoining y/E to Q, and the minimal 
polynomial of V5 is a quadratic, 

We next describe the set Q.(\/5) of algebraic integers in R which also 
occur in Q(\/5). 

Theorem 2. The set Q.(\/5) of algebraic integers in Q(V§y consists of 
precisely the numbers | ( a + b V 5 ) * where a and b are integers such that 
a = b (mod 2). 
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Proof. Using T h e o r e m 1, any number u in Q(V§) niay be e x p r e s s e d 

as u = (a + b V 5 ) / c , where the in tege r s a, b , and c have no common f a c -

tor except ±1. We may a s s u m e b ^ 0 to exclude the t r iv ia l c a se when u is 

ra t ional . Then the monic polynomial of lowest degree sat isf ied by u i s 

_ a + b V 5 \ / _ a - b V ^ \ = x 2 _ / 2aV + a^ -sb^ ^ 

If u i s to be an a lgebra ic in teger , then the coefficients 2a / c and (a2 - 5b2) 

/ c 2 mus t be in tegers . Thus 4a2 / c2, (4a2 - 20b2) /c2
5 and hence 2 0 b 2 / c 2 

mus t al l be in t ege r s , so that c |2a and c2J20b2
5 where n | m means n divides 

m. Now any p r ime factor p ^ 2 of c mus t divide both a and b by the 

above* con t r a ry to our assumpt ion that a, b , c have no common factor except 

±1. S imi lar ly 4jc i s imposs ib le , so the only choices left a r e c = 1 and 

c = 2. 

If c = 1, p(x) has in tegra l coefficients and u i s an a lgebra ic in teger . 

In this c a s e u has the form |(2a + 2bV5), and 2a = 2b - 0 (mod 2), so the 

conclusion of the theorem i s t rue . If c = 2, then (a2 - 5b 2 ) / c 2 = (a2 - 5b 2 ) /4 

i s an in teger if and only if a and b a r e e i ther both odd o r both even, o r 

equivalently a = b (mod 2). Hence the t heo rem a lso holds h e r e , complet ing 

the proof. 

We r e m a r k the Q.(\ /5J actual ly forms a r ing because it i s c losed under 

multiplication. The r e a d e r is u rged to verify the deta i ls . 

We next invest igate the quest ion of units in Q ( \ / 5 ) . F i r s t note that by 

definition if uA and u2 a r e uni t s , then u1? uj"1, u2, u^"1, - u t a r e all in Q.( \ /5) . 

Using T h e o r e m 2, i t i s s t ra ight forward to verify that then u ^ , ( u ^ ) " 1 , u ^ 1 , 

(UjU^"1)"1, ( - u ^ - 1 a r e a lso in Q.(\ /5) . Hence u ^ , u ^ 1 , and -ut a r e uni ts 

in Q(\/E)e In pa r t i cu la r , if u i s a unit, so i s u _ 1 . 

The Gauss ian in tegers J a r e the se t of complex number s with in tegra l 

r e a l and imaginary pa r t s . A useful function from J to the nonnegative i n t e -

g e r s i s the n o r m defined by |a + b i j ~ 2? + b2
8 This n o r m i s handy because 

j x y | * | x | | y | for x, y G J , so i t p r e s e r v e s the mult ipl icat ive s t r u c t u r e of J . 

We now introduce an analogous function on Q . ( \ /5 ) . If u = | ( a + b V 5 ) G Qj 

( V 5 ) J define the n o r m of u by 
N(u) = | ( a + b \ /5)^(a - b V 5 ) = |<a2 - 5b2) . 

(2) p(x) 
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The reader should verify that N(u) is always an integer (possibly negative), 
and that N(UiU2)= NfUjJN^) for all ul5u2 E Q..(V5J. We use this norm to 
obtain a characterization of units. 

Theorem 3. An element u E Q.(\/5) is a,unit if and only if N(u) = ±1. 
Proof. If u is a unit, then u, u-"1 E Q.(\/5), so that 1 = N(l) = 

Nfuu-1) = N(u)N(u_1). Since N(u) and N(u_1) are integers, N(u) = ±1. Con-
versely, if u - |(a + b\ /5) E Q.(V5) such that N(u) = ±1, then 

{(a + bV5) }(a ™ b V5) - ±1 , 

so that 

u"1 = ±-|(a - b\ /5) ^ Q ^ V i j 

by Theorem 2. Thus u is a unit. 
Using the norm function on Q.(\/5) and recalling that a unit in Q(V5) 

must already be in Q.(V5)» we can obtain a complete accounting of the units 
in Q(V5). Let a = (l + \ /5 ) /2 E Q.(\/5)„ Then N(a) = - 1 , so by Theorem 
3 a is a unit in Q(\/5). By the above remarks we therefore know that ±a9 

±c*2, ±«3, • • • , ±1, fof"1, ± *~2, • • • are units in Q(\/5). Thus in contrast with 
the Gaussian integers J, where the only units are ±1, ±i, in Q(\/5) there 
are units of either sign as large or as small as we please. 

Theorem 4. The numbers 

(3) ± a n , ±a""n (n = 0, 1, 2, •••) 

are the only units in Q(\/5). 
Proof. We first prove there is no unit between 1 and a . Suppose that 

there is a unit u E Q.(\/5) such that 1 < u < a . By Theorem 2, u = Ux + 
y V^j j where x and y are integers. Then by Theorem 3 

±1 = N(u) = 2 ^ d = ( i ^ ) ( x ^ l ) , 

so that using 1 < u we find 
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-J.(x + yV5) < -1 < |(x + yV5)|(x - y\/5) < 1 < j(x + yV§) . 

Dividing by u / 0 yields 

(4) - I < i(x - yVH) < 1 . 

Adding (4) to 1 < u < a gives 

0 < x •< 1 + a , 

showing that x = 1 or 2. But in either case there is no integer y such that 
1 < u < a holds. This contradiction shows there is no unit between 1 and a. 

Now to finish the proof. Suppose u ^ 0 is a unit, where we may assume 
u is positive since -u is also a unit. Then either u = ot , or there is an 

n n+i ~n —n 
integer n such that ot < u < ot . Now ot is a unit, implying a u also 
is. But then 1-< oT u < a, which was shown impossible in the first part of 
the proof. Hence the onfy units in Q(\/5) are given in (3). 

We now use Theorem 4 to give a characterization of Fibonacci and Lucas 
numbers. But we first need, 

Theorem 5. Define the Fibonacci numbers F by F0 = 0, Fj = 1, 
F , = F , + F , and the Lucas numbers L by Ln = 2, LH = 1, L ,n = n+i n+i n' n J u 2 n+2 
L _,_ + L . Then n+i n 

a11 = 4<L + F V5) . 2X n n v ; 

Proof. We establish this by induction. It is certainly true for n = 0 ,1 . 
If it is valid for n = k, k + 1, simply adding the corresponding equations 
together with the fact that « 2 = a + « shows it holds for n = k + 2, 
completing the induction step and the proof. 

Theorem 6. The algebraic number 4(a + b\/E) €E Q(V5) is a unit if and 
only if a = L and b = F for some integer n. 

Proot This is a combination of Theorems 4 and 5. 
Thus we have characterized the Fibonacci and Lucas numbers in terms 

of the units in Q(\/5). We note in passing that since ot is a unit of Q( \/l>), 
Theorem 2 implies F = L (mod 2). 
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An application of these properties of Q(\/5) to prove the converse of a 
familiar property of the Fibonacci numbers has been given by Carlitz [2] . This 
type of development is capable of generalization to Q(V3j# where d maybe 
assumed to be a squarefree integer. One striking fact is that the analogue of 
unique factorization of elements into powers of irreducible (prime) elements 
holds for only a finite number of d (d = 5 is one of them). For further in-
formation about this, we refer the reader to [3; Chap. 15] for a number theo-
retic approach, and to [l; Chap. 14] for an algebraic one. 

4. THE SOLUTION OF x2 - 5y2 = ±4 

We show here how the solutions of the Diophantine equation x2 - 5y2 = ±4 
may be easily obtained as a byproduct of the preceding algebraic material. 
Note that N(a) = - 1 , so that N(an) = (~l)n. Then if u E Q.(V§), N(u) = 1 
if and only if u = «2 n , and N(u) = - 1 . if and only if u = a2n+i for some in-
teger n. This observation leads to the 

Theorem 7. (i) All rational integral solutions of x2 - 5y2 = 4 are given 
by x - L2n, y = F 2 n , and (ii) all of x2 - 5y2 = -4 by x = L2n+1, y = F 2 n + 1 

(n = 0, ±1, ±2 , . - . ) . 
Proof, (i) Since N(«2n) = 1, Theorem 5 shows that the purported solu-

tions actually satisfy x2 - 5y2 = 4. Conversely, If x2 - 5y2 = 4, then x =. y 
(mod 2) and N[l(x + yV§)] = 1. By the preceeding remarks, ^{x + y\/5)= 
a2n for some n, so that by Theorem 5 x = L2n, y = F 2 n , showing that these 
are all the solutions, 

(ii) As in (i), N(a2 n + 1) = -1 and Theorem 5 show that x = L2n+1, y = 
F2n+i are actually solutions. On the other hand, if x2 - 5y2 = -4, then x = 
y (mod 2) and N[|{x + y V§)] = - 1 . Then | (x + y V5) = a2n+1 for some n3 

so by Theorem 5 x = L2n+1} y = F2n+i, completing the proof. 
We remark that Theorem 7 was proved by Long and Jordan [4] by using 

the classical theory of the Pell equation, from which the result follows easily. 
Theorem 7 also provides a characterization of Fibonacci and Lucas numbers 
analogous to Theorem 6, but in terms of a Diophantine equation. 
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5. THE SOLUTION OF A CERTAIN BINOMIAL COEFFICIENT EQUATION 

We shall use the preceding results to solve completely the seemingly un-
related binomial coefficient equation, 

<*> (") - ( I ; !)• 

For example, the three solutions of (5) with smallest n are 

(5)-0)-1-(")-(1«)-*, o''(^)-(«)-
Firs t note that by cancelling common factors, (5) is equivalent to 

n(k + 1) = (n - k)(n - k - 1) , 

or 

k2 + (1 - 3n) k + n2 - 2n = 0 . 

This quadratic in k has a solution in integers if and only if its discriminant 
5n2 + 2n + 1 is a perfect square, say 

5n2 + 2n + 1 = t2 . 

Then 

25n2 + lOn + 1 = 5t2 - 5 + 1, 

so that 

(7) (5n + I)2 - 5t2 = -4 , 

which is the form of the Diophantine equation which we solved in the previous 
section. Then by (ii) of Theorem 7, (7) has an integral solution if and only if 
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x = L2r+ij y = F2r+i, and x H 1 (mod 5), the last condition being imposed 
so that n is an integer. Now it is easy to verify that L 2 r + 1 = 1 (mod 5) if 
and only if r is even, say r = 2s, so all solutions of (7) are given by 

L4S+1 " 1 

n = _ _ . s t = F 4 s + 1 . 

Using the Binet form for Fibonacci and Lucas numbers, we have 
L4S+1 " 1 

n = _ = FgsFgs+j . 
Also, 

k = 2" " = ^ 3 F 2S F 2S+ l ~ 2 " F4S+l) = F2S-2F2S+1 • 

Hence all solutions of our original equation (5) are given by 

n = F2sF2S+i s k = F2S_2F2S+1? s = 1, 2, 3, • • • , 
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