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INTRODUCTION
Suppose {an} is a sequence of natural numbers such that a4y T 24 +
a, n= 1,2,--+, and let A(n) be the number of sets of numbers {11, igy - }
such that n = a; +a; +-+-. When a_=TF , F or L _ (where as usual
1 2 n n n+i n

Fn and Ln are the n~ Fibonacci and Lucas numbers, respectively) we write

A@m) = R(n), T(m), or S(n), respectively. Among other things we proved

the following theorems in an earlier paper on this subject [4].

Theorem 1. If a < K=a +k a -ay n= 3,4, then
—_— n n n+i

(a) AK) = Al + Al -k-ay),

and

(b) AK) = A(an_H -k -ay).

Also, if a3 2 2 and 1< k< a; -1, then

(c) A(an_1+k—a2) = Ala_-k) = A

n g TE-2), o= 4,500

Theorem 2:

3
2
[

(a) 1 if, and only if, N = Fn+1_ 1, n=20,1,""

(b)

b
2z
I

2 if, and only if, N = F 3+Fn—1 or Fn+4-F -1,

n+ n
n=12,-°"".
() T(N)=3, ifandonlyif, N = Foas ™ F,- 1, Fots +Fn+1 -1,
Frag=Fp-L or Fo-F -1 n=L2-.

*Thispaper was written while the author was a postdoctoral fellow at McMaster
University, Hamilton, Ontario, 1967. .
Kl (Received July, 1967)
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d) T(Fn+k+2+2Fn+2 -1)=k, n=1,2,-++, and k = 4,5,«+- .

For several values of k Hoggatt found solution sets of T(x) = k; in
each case this solution set could be described as a finite set of sequenceshav-
ing the form b -1 where b_,_=b +b . Thus he was led to conjecture:

n n+2 n+i n
If {bn} is a sequence of natural numbers such that 1on+2 = bn+1 + bn’ then
T(bn -1 = T(anr1 -1 =k
for all sufficiently large n. Our main purpose in this note is to give proof of

Hoggatt's conjecture.

A REPRESENTATION THEOREM

Suppose ---, F_y, Fy, Fy, -+ is the extended sequence of Fibonacci

members; that is, F; = 0, F; =1, and F -F -F =0, -0 n =<oo.
mempers n+i n n

-1
Thus, we have

F_=D"F, n=1,2,
The following representation theorem should be compared with Zeckendorf's
theorem (see for example Brown [1], [ 2], or Daykin [3]); in particular, is
there a sequence essentially different from {Fn} which satisfies the conditions
of Theorem 3?
Theorem 3. For every pair of non-negative integers A and B there
exists a unique set of integers {kl, ce ,k]-} such that |ky - kg| 2 2 whenever

r #s, and

A = Fki + e 4 Fg, and B = Fk1+1+---+Fki+1.

Proof. If a set of integers {mi,' . ,mi} has |mr - msl 2 2 when-

ever r # s, Fm toeee + Fmi is called a minimal sum. There is a finite
1
algorithm A for converting Fm + Fm toeee + Fmi into a minimal sum if

FIn +oeee + Fmi is a minimal sum A: First, if m = mj for some j we can

1

convert F_ +-+-- +2F,_ .+« + Fy,. into a sum involving F's with dis-
my mj i

tinct subscripts since there is a maximal t such that 2F Fm—z teee +

Fm—zt is a part of this sum, and this can be replaced with
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+ 4 oo

Fm+1 Fm—i " Fm—zt+1 * Fm—zt—z ’
Second, if Fm + Fm toeee 4 Fmi is a sum involving F's with distinct sub-
scripts, a minimal sum can be obtained in a finite number of steps by succes-
sively replacing FV + Fv—i’ v maximal, with FV e Note that if A is applied

ee e + e oo i =
to Fn+m1 + Fn+m1 and an1 + + Fn + nj is the result when n = 0,
then tue same statement holds for n = 1,2, .

Consider the sequence {bn} defined by
bp = A, by = B, b =b ,,+b, n=0,1,-,
then it follows that

b =F A+F B, n=0,1,"""
n n-1i n
Using the algorithm A we are going to show by induction on A + B that for
every pair of non-negative integers A, B there exists a unique set of integers
{ki,-'- ,ki} such that 'kr - ksl 2> 2 when r # s, and

(1) AF,  * BF = Fpp *° +Fn+ki’ n=0,1,-:
If A+B =1, then
AFn—i + BFn
is Fn_1 or Fn, n=0,1,"** . Suppose the statement is true for every pair

of non-negative integers A,B with A+B <n (n2> 1). Thenif A+ B = n,
there exists a unique set of integers {ki, s ,ki} with lkr - ksl > 2 when

r # s, and

AP, (#BF = F b #F o

Now we can apply A to

(A~ 1>Fn—1 * BFn - Fn—i * Fn+k1 T T Fn+ki



238 PARTITIONS OF N INTO DISTINCT FIBONACCI NUMBERS [Oct.

or

AF +(B+1)F =F +F +eee + F
n-i n n n n

+ky +k;

1

to find that there is at least one set of integers which satisfies (1) for every
pair of non-negative integers A,B with A+ B =n+ 1, But suppose AFn_1
+ BFn can be expressed as a minimal sum in two ways for n = 0,1,-+-, say

+ = 4 o000 4 = + oee
ARy T BE, Fn+r1 Fn+ri Fn+s1 Fn+Sj :

Thus, for every
;
n Zmax Ty, **c, Ty Sgy *t0, sj}

the number AFn + BFn has two representations as a sum of non-consecutive

Fibonaceci numbers (with positive subscripts); this contradicts Zeckendorf's
theorem which says that such representations are unique for every natural
number.

Corollary: If {bn} is a sequence of natural numbers such that

n+a bn+1+bn’ no=0,1,00

then there exists a unique set of integers {ki, cee, k]} withvl kr- kSI 2 2 when
r # s, such that

(2) bn = Fn+k1+.“+Fn“'ki’ n=0,1,°*" .,

Proof. Put by = A, by = B in Theorem 3, then (2) can be proved by

induction on n.

HOGGATT'S CONJECTURE

Theorem 4. Suppose {bn} is a sequence of natural numbers such that

b =Dh +b_, then there exists an N such that
n+i n

(3) T('bn -1) = T(bn+1 -1), n2N;
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in fact, if

= s 0 e > p i = 206 T
(4) b Fn+k1+ +Fn+ki , kj_ kj+1+2, j 1,200, i-1.
then N = 2 - ki" If ki ~ 2, the extended sequence found by substituting n =
-1, ee+, 2 - k; in (4) satisfies (3) for n 2 2 - k;.
Proof. The Corollary to Theorem 3 guarantees that lon has the (unique)
representation given in (4), so we can assume bn has this form. If i = 1,

Theorem 2(a) asserts T(Fn -1) =1 for n =1,2, =+, so0

1) = T(F 1)

Fn+k1 - ntkytt T

for n 2 2 -ky (infactfor n= 1-ky). Now assume i > 1. We have

< -1 = -
Fn+k1_ bn 1= Fn+k1+1 Fs »

for n2 3-k; = 2- ki, so Theorem 1(a) can be used to write

(5) T(bn -1 =Tk -F - 1) + T(F

- + - R
n n+ky : bn 1 - F)

n+k1+1

Suppose 1 <j =< i is the smallest member such that kj > kj+1 + 2, then

Fn+ki—1 - 1, if J =1,
6) F -b +1-F; =
n+ky+1 n +”°+Fn+ -1, if j <1.

F + F
n+kj~—2 n+kj+1 kj

Now (5) and (6) indicate that Theorem 4 can be proved by means of a
double induction on i and k- ky = k= 2; thus, for i, k=2 2 we define

proposition P(i,k): If {bn} is a sequence of natural numbers with

= 4 eee 4+
bl‘l Fn+k1 Fn+ki :

such that ky 2 kg +2, °=°, kiy 2 kj + 2, and ky - ky = k, then
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T(bn -1) = T(bn+1 -1)
forall n > 2 - ki'
To prove P(2,2) is true, suppose
bn - Fn+k1 * Fn+k2
with ky = kg - 2; then using (5) and (6) we have
(7) T(Fn+k1 + Fn+k2 -1 = T(Fn+k2 - 1) + T(Fn+kz—1 -1,
but
T(Fn+k2 -1 = T(Fn+k2-1 -1 =1
forall n 22 - ky.
Suppose P(2,k) is true for all k < K (K > 2), and suppose
bn - Fn+k1’ Fn+k2
with ky - kg = K, then using (5) and (6) we have
(8) T(Fn+k1 + Fn+k2 -1 = T(Fn-’rkz - 1) + T(Fn+k1-2 + Fn+k2 -1).
If
K =3, T(Fn+k2 -1) = T(Fn+k1—2 + Fn+k2 -1 = T(Fn+k1+1 -1 =1,

forall n=> 2 -ky If K> 3,

TE sgegmg ¥ Pty = D = T(Fn+k1+1 Tty

- 1) forall n=22-ky,



1968] PARTITIONS OF N INTO DISTINCT FIBONACCI NUMBERS 241

so P(2,k) is true; thus, P(2,k) is true for all k= 2,

Now we suppose P(i,k) is true for all i <I (I> 2) and all k > 2;
there is no difficulty in showing that P(I,2) is true and that PI,K- 1) im-
plies P(I,LK) for K > 2, by using (5) and (6) just as before. This completes
the proof.

Corollary:

| k+2 =
T(F . * F -1 -[ 5 ] kyn = 2,3, .,

Proof: Combining (7) and (8) and related results we have

2, if k = 12,3,

(9) TE , +F -1 =

1+T(Fn+ 2+Fn-1), if k =4,5,°°".

k-

The proof follows by induction on k in (9).
Theorem 5. Suppose { bn} is a sequence of natural numbers such that

then T(bn), T(br1 + ),**° form arithmetic pro-

gressions for all sufficiently large n.

), +++, and R ), R .,

Proof. The proof that T(bn), T(bn +2),"° forms an arithmetic pro-
gression follows the proof of Theorem 4, except that we use the fact that a
term-by-term sum of two arithmetic progressions is also an arithmetic pro-
gression. Theorem 4 and this last result imply R(bn), R(b][l +2),- <o forms
an arithmetic progression because R(N) = T(N) + T(N - 1), so R(bn) +
T(bn - 1).

SOLVING T(x) = j

In the last section we showed that T(x) = T(y) for every pair
X,y € Sk, 0, k) = _{Fn+k1 Fooee Fn+ki -1Lin=2-ky 3-kiooo),



242  PARTITIONS OF N INTO DISTINCT FIBONACCI NUMBERS [Oct.

where
ki 2 kg + 2, o0, ki_y = ki + 2 ;
since
S(kls“':ki) = S(k1+ k,"":ki +k)3

we will assume ki = 0. The next theorem asserts that every solution x of
T() = j is contained in one of a finite collection of sets S(ky,+«+,kj) for
appropriate sets of numbers {ki, eeo, ki} .

Theorem 6. (a) Every non-negative integer is contained in exactly one

of the sets S(kj,++°,k;), where {ki, XL kj} ranges over all sets of integers
such that

ki2 kg + 2, ¢+, ki = ki+2, kj =0,

() If x,y Slky,°**,k;), then

ky + 2
T) = T(y) < [ > .

(c) There exists a finite, non-empty collection of sets S(ry,*+<, 1), S(sy,

***,8m )+ such that T(x) = j if, and only if, x & S(ry,**+,rm) U S(sy,
Sp)U e+ .

Proof. (a) This is a reformulation of Zeckendorf's Theorem. (b) The
result is true when i = 1 or 2 by Theorem 2(a) and the Corollary to Theorem
4, respectively. Now (5) and (6) can be used to prove (b) by induction; the
main point of the proof is indicated by the following inequality:

(10) T(F

1) = T(Fn+k2 +oee o+ Fn+k1 -1)

+ T(Fn-kk.-z +ooe + Fn+ki - 1)

ki"JI'kHZ] e . o
1+[-—2ﬂJ=L 5 s lf]'—].,

ki] "k1—2j+2jl [k1+2" N
[7 +|_"“T—2 3 J,lf3>1-

+e0o + F -
n+ky n+kj
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(c) Every number is in exactly one of the sets S(ky,*+-,k;) by (a) of this
Theorem; but x € Sj = {X:T(X) =j} and x & Sky,+++,ki) implies Sy, =<°
ki) is contained in Sj since T(x) = T(y) = j for every y € S(ky,*+-,kj) by
Theorem 4. There are only finitely many sets {ki, see, ki} such that

k‘l'2 ky + 2, 0, kig 2 ki + 2, kj = 0,
and

kg + 2

In
e

s0 S]. is a finite union of sets S{ry,++<,1rym), S(Sy,c°+,Sp)ye++ . The cor—
ollary of Theorem 4 implies Sj is non-empty for j = 1,2,*°*; a different
collection of solutions of T(x) = j was givenin [4].

Let t(ky,*+-,kj) = T(x), where x € S(ky,*++,kj); then if i = 1, we
have t(0) = 1 which is Theorem 2(a). For i > 1, if j is the smallestnhum-
ber such that kj > kj +4 T 2, then (5) and (6) may be formulated as

tlky, *o0, ky) + 1, if j =i
tlkg + ooe +Kj) +t(kj - 1,kj+2, cee, ki)

e s < s _
if j i, kj kj+1+3’

(11) t(kj_s ctty kl) =

thy + *oo +kg) * ol - 2, k

. .<- >
it j <1, kj_kj+1+4.

j+1’q oo

Using Theorem 6(b) and (11) we can find all solutions of T(x) = j witha
finite amount of checking., This checking would be made easier if we had a
non-iterative method for computing t(ks,*°*,k;j), but so far we have not been

able to find a closed formula for t(ky,***,k;) .
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MORE ABOUT THE “GOLDEN RATIO™ IN THE WORLD OF ATOMS

J. WLODARSKI
Porz-Westhoven, Federal Republic of Germany

In an earlier article (The Fibonacci Quarterly, Issue 4, 1963) the author
reported some fundamental asymmetries that appear in the world of atoms.

It has been stated in this article that the numerical values of all these
asymmetries approximately are equal to the ""golden ratio" ("'g. r. ).

Two of these asymmetries were found:

1. In the structure of atomic nuclei of protons and neutrons, and

2. In the distribution of nucleons in fission-fragments of the heaviest

nuclei appearing in some nuclear reactions.

Recent theoretical studies suggest that an element containing 114 protons
and 184 neutrons may be comparitively stable and therefore this hypothetical
substance could be produced possibly in some nuclear reactions [1].

One possible reaction involves bombarding element 92 (uranium) with ions
(atoms stripped of one or more electrons) of the same element 92, which should
yield a hypothetical compound nucleus 15[x]*" that could break up asymmetri-
cally and produce a nucleus with 114 protons:

92U + U 1oy [x 16> 11y [y]P%8 + (YD1 + 12n;
12 neutrons (n) would be left over from the reaction [2].

Remark: Both hypothetical (with no names) products of this reaction are
designated with the symbols [x] and [y] respectively. '

It turns out that the ratio of 114 protons and 184 (298 - 144 = 184) neu-
trons of the hypothetical element 114 is equal to 0.6195 and differs from the
"g, 1. '"-value (if we limit the "g. r. "-value to four decimalsbehind the point) by
0.0015 only.

[Continued on p. 249. ]




