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1, INTRODUCTION

Stirling numbers of the First and Second Kinds appear as numerical co-
efficients in expressions relating factorials of variables to powers of the var-
iable and vice versa. Riordan [1] investigates the properties of Stirling num-
bers in great detail, particularly with respect to recurrence formulas and
relationships to other special numbers.

In the series expansions on certain functions of logarithms, Adams [2]
develops and tabulates coefficients which run through positive and negative
indices. A rearrangement of Adams' table for positive indices together with
an appropriate alternation of sign yield Stirling numbers of the First Kind while
a different rearrangement for negative indices yields Stirling numbers of the
Second Kind,

An excellent summary of the properties of Stirling numbers including
recursion and closed form expressions for finding Stirling numbers is pre-
sented in a recent Bureau of Standards publication [3]. 1In this regard, it is
interesting to note that members of special partitions of numbers described
in the April, 1964, issue of this Journal [4] can also be used to develop

Stirling numbers. A discussion of this latter method follows.

2. DESCRIPTION OF COEFFICIENTS

Riordan uses the notation S(n,k) and s(n,k) for Stirling numbers of the
Second and First Kinds, respectively, where the integers n and k are pos-
itive. Stirling numbers of the First Kind, the sum of whose n and k is odd,
are negative. Adams chooses CI];, where n is a negative or positive integer
and k is zero or a positive integer. Although none of Adams' C's are nega-
tive, a negative value for n identifies a C equal to a First Kind Stirling num-
ber, neglecting sign. For convenience of manipulation, the obviously sub-

k k, re-

scripted (R for Riordan, A for Adams) indicates n R XA

R A’
place the n and k's, By direct comparison, it can be seen that
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(1) ky = -n,
(applies for Second Kind only),
(2) _ np = kR +k A
3) np = n,
(applies for First Kind only).
(4) np = ky +k,

The above equations lead to

_kR
(5) Stn,,k,) = C_ ",
R’"R np kR
6 S
() kA - (A—nA’_nA)’
n_+k n
R "R R
(7) S, ky) = (-1) *C s
R’"R np kR
n 2n, -k .
A _ A . -
(8) CkA = (-1) s(n sy kA) .

Tabulations of a few Stirling numbers are given below.

Table 1 S(nR, kR)
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Table 2 s(nR, kR)
nR\kR 1 2 3 4 5
1 1
2 -1 1
3 2 -3 1
4 -6 11 -6 1
5 24 -50 35 -10 1

In Adams' table, vertical entries for positive n , are, with appropriate
signs, First Kind Stirling numbers, and 45-degree, negative slope, diagonal

entries for negative n

A are Second Kind Stirling numbers.

3. GENERATION OF SECOND KIND STIRLING NUMBERS

The negative n A section of Adams' table suggests a numerical procedure
by which Second Kind Stirling numbers can be generated simultaneously with
the generation of members of the special partitions described in [4] For
example, in Table 3 consider a few column entries from Adams' table for n

A
= -4, Differences between the entries are included

Table 3
k A\n A -4 Differences
0 1 1
1 10 9
2 65 55
3 350 285

If the differences were known the table entries could be found easily. The dif-
ferences, however, do not stem from simple recursion formulas. If the man-
ner in which successive sets of Second Kind Stirling numbers are foundis
investigated, it is seen that the differences are sums of products whose range
is controlled by n A and k x As an example from Table 3 (n A= -4, k A = 3)
the products can be set up and sums formed vertically and horizontally as is

shown in (9).
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1 2 2x2 2x2x2
3 2x3 2x2x3
4 2x4 2x2x4
3x3 2x3x3
3Ax4  2x3x4
(9) 44 2x4x4 Vertical Sums
3x3x3
3x3x4
3x4x4
Ax4x4

1+ 9+ 55 + 285 = 350

Horizontal Sums

The significant fact demonstrated by (9) is that exclusive of the initial 'one,"
the multiplication signs, and the resultant summations, the array presented

by (9) is identically that found in the development of the partition set
PV(=2,<12]=1,<3]=2,=<4)

according to the methods described in [4] For the purposes of this paper,
the PV set designation implies that the set of partitions is arranged in col-
umns, each column consisting of partitions having exactly as many members

as the column number. Thus, the set designation

{1, PV(z2,=12/=1,<3|=2,<4)}

includes an initial '"one'' and the properly arranged partitions.

In general, the set
{1, PV(zz,s-nAkA|21,sk |22,5—nA)}

when interpreted as in (9) yields Adams'

for negative n A Through use of (1) and (2), itis seen that the Second Kind

Stirling number S(nR, kR) can be found from the set

{1, PV(=2, =k, - k)| =1, =, - kR[ =2,=kp)} .
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The method suggested above leads directly to

n
CkA
A

or S(nR, kR). An ALGOL language computer program for obtaining the parti-
tions described in [3] was developed as a result of student projects under the
author's direction. It is obvious that only a slight modification of this program
would be required to generate and store products (as the corresponding par-—

tition is formed) needed to obtain C's or S's directly as exemplified by (9).
4. GENERATION OF FIRST KIND STIRLING NUMBERS
Adams lists the following formulas for finding
C?A, CI:A, and CZIA

The sum forms are applicable for n A positive, but the product forms apply

for n A positive or negative,

(10) CZIA: 1
(11) CTA=1+2+3+...+(nA_1):nA(ng‘l)
A
Cy =1x2+1x3+1x4+...+1x(nA_1)
+2x3+2x4+... +2X(nA_1)
(12) F3x4+.s +3xm, - 1)

+ (0, -2, - 1)

nA(nA - 1)(nA - 2)(3nA -1)
24

Although Adams gives no formula for kA > 2, (10), (11), and (12) suggest that

tabulations of sums of products might be useful for an extension beyond k A "
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2. This is indeed the case as can be demonstrated in an example in which n A

5. Tabulations corresponding to the known formulas (10), (11), and (12) are

listed below. For reasons given later, crossed-out dummy entries areincluded.

1 i1 2 | 2 2=x2
| 3 I 3 2x3 .
| 4 1 4 2x4 Vesrtlcal
(13) I [ 3-%3 ums
1 1 3x4
b b A=x4
1
1=C}, 1+9 =10 =0}, 9+26 = 35 = C}

Horizontal Sums

Consider the possible extensions beyond (13) for k, = 3 and k N 4 shown

A
in (14).
232 232362 1 2%23%2
2x3 232363 1 2x%2%3
2x4 23234 I 2%234 Vertical
333 ] | 2e3e Sums
3x4 2x3x4 ! 2x3x4
4xed 23434 I 23dx4
14) 3%x3%x3 I 3%x3%x3
Ix3x4 I 3x3x4
Ixdxd I 3xdx4
dxdzd 1 4xdxd
1

26 + 24=50=C31 24 =C]

Horizontal Sums

Again, note that the crossed-out entries do not contributeto a sum. The exten-
sions exemplified by (14) yield the correct C} and Cj .

It is seen that exclusive of the initial 'ones' (where present), the multi-
plication signs, the crossed-out lines, and the resultant summations, the tabu-
lations of (13) and (14) are each a partition set of the type described earlier.
Further, it is seen that only those entries with repeating members are crossed
out. The success of (13) and (14) is not accidental. An investigation of the
breakdown of First Kind Stirling numbers reveals that the pattern of (13) and

(14) is general.
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Exclusion of the crossed-out entries changes a partition set to one with
non-repeating members. For identification, the designation changes to PuV'
One way of obtaining PuV sets would be to generate PV sets and ignore
repeating member partitions. This process is, of course, inefficient and can
be circumvented as will be shown later.

For the example given, the following implications can be expressed:

{1y ci =1
1, pve2, stEL=1z2,= 9} —=0c] = 10
(15) {1, P ve2,<slz1,=2[=2,= 9}—=cf = 35
{0, P V=4, =12]z2,= 3]z2,= 9}—=0cf = 50

{0, Vs, <12|=3,= 3]=2,= 4}—C} = 24 .

For the general case, the implication is that

kA +3 kA+3 kA
Pl Bt Skl BT et i B N ] I HCTNRYR BN
A A A
(16) -
k,+3 k k n
A A A A
-1+ s =k, - | ——=| -] = l|=2, =@, -D))=C_, n, =0
ZkA+2 A n,-1 n, A kA A
It can be observed from (16) that*
n
CkA
A
does not exist for k, = n,. The corresponding expression for Stirling num-

A A
bers of the First Kind is found through application of (7) to (16) as

*Brackets | | except where obviouslyused for references are usedinthe cus-
tomary mammer with real numbers to indicate the greatest integer less than
or equal to the number bracketed. See Uspensky and Heaslet [5].
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m_ -k_ +3 n_ -k, +3
R R R R
— |, P V{=2{n_ -k -1+ |7 , <fn, -k
ZnR—ZkR+2 u R R 2nR—2kR+2 R
(n -k | n. -k +3 |
R R R R
an - | =—7lo,-1|=n, -k, -1+ |57 "— |, =n, -k, -
np 1 R R R ZnR ZkR+2 R R
—n -k n, -k n.+tk
R_ R R_ R - ) R R
- — - =2,<n_, -1} —>(-1) s(n,, k) .
nR 1 nR R R’"R
= - /

5. REDUCTION OF PuV TO SIMPLER PV FORMS

As was indicated earlier, one way of obtaining the PuV partitions is
first to generate PV partitions and then to retain non-repeating member par-
titions. The repeating member partitions serve onlyas devices for successive
generation of partitions. Equations (13) and (14) illustrate graphically the
wastefulness of such a procedure. It is possible to generate simpler PV par-
titions which easily can be modified to yield the desired PuV partitions. The
method of doing this is described below. While this method applies particular-
ly for the partitions of this paper and is not intended to be general, it has the
computational feature of generating exactly as many PV partitions as are
needed for conversion to PuV partitions — no more!

A PuV partition applicable for this paper can be expressed as
(18) P_V(=2c, <ab|=c, <b|=2, <a)

whether either b = ¢ aloneor b =c¢ and b = ¢ + 1, depending on whether
the set (1 or O, PuV has one or two columns pf partitions. .(See (15) for
example). Assume that b = ¢. If the PV designation applied for (18), the
largest (and last) b-member partition would total ab and would appear as b
a's, (a,a,---,a). The u subscript, however, wouldnot permit this partition,

the closest approach being

(a-b+1, a-b+ 2, -+, a)

However, (@ -b+1, a=b+2,---,a) can be formed by member additionof
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@-b+1, a-b+1,---,a-b+1) and (0,1,2,°*+,b - 1) .
For a given b,
@-b+1, a-b+1,---,a-b+1)
is an acceptable last partition in a one-partition column PV set and has a
greatest member a -b + 1 and the sum ab - b(b - 1), The lower limits of the
new PV designation remainthe same as in (18), Thus, a member-by-member
addition of (0,1,2,++,b - 1) to the members of

(19) PV(=2,<ab - b(b - 1)|=b,<b|=2,<2-b+1)

produces the desired form of (18) where b = ¢, For the case of two columns

of partitions (i.e., b=1¢, b =c+1),

(20) PV(=2c¢c,<ac - c(c - 1)‘20,5.0'22,551 -c+1)

is augmented by (0,1,2,--+,c - 1) and

(21) PV(=2(c + )=a(c + 1) -c(c + 1)|=c + 1,<c +1|]=2,=<a - ¢

is augmented by (0,1,2,-++,c). An examplefor a = 4, b =3, ¢ = 2 follows.

PV(=4,=6[=2,=2[=2,=3) P V(=4,=12=2,=3]=2,=4)

»3 2,3,4

+ (0, 1) =———————

2,
(22) 2,
35

W W N
Lo DN DD

,4
,4
PV(=6,<6|=3,<3]>2,<2)

2,2,2 + (0,1,2)

Comparison of (22) with (14) shows the reduction in computation.
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ERATTA FOR
FACTORIZATION OF 2 X2 INTEGRAL MATRICES WITH DETERMINANT *1

Gene B. Gale
San Jose State College, San Jose, Calif.

Please make the following corrections to "Factorization of 2x2 Matrices

with Determinant +1," by Gene B. Gale, appearing in the February 1968 issue,

Fibonacci Quarterly, pp. 3— 22,

Page | Line Reads Should Read
5 6 d< 0 d= 0
5 -8 c= d c= d
o |- - ] e - s
9 5 ad-bc = ad-cd=(a-c)d= 0 ad-bc> ad-cd =(@a-c)d= 0
a r+1 a r + 1\
9 |-t <c w > (c d )
9 4 cd= 0 c,d= 0
11 -5
5 n
{12 3} N
12 | -6 ar = (a - 1)(r - 1) ar - (a - 1)(r-1)
15 | 6 d(rF)_+sF__,) d|@F, +sF_)
16 | -4 A,B A, B
. ab - bcl ad - bc
17 -9 pa | Bd

Continued on p. 112



