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1. INTRODUCTION 

Stirling numbers of the First and Second Kinds appear as numerical co-
efficients in expressions relating factorials of variables to powers of the var -
iable and vice versa. Riordan [ l ] investigates the properties of Stirling num-
bers in great detail, particularly with respect to recurrence formulas and 
relationships to other special numberse 

In the series expansions on certain functions of logarithms, Adams [2^j 
develops and tabulates coefficients which run through positive and negative 
indices. A rearrangement of Adams1 table for positive indices together with 
an appropriate alternation of sign yield Stirling numbers of the Firs t Kind while 
a different rearrangement for negative indices yields Stirling numbers of the 
Second Kind. 

An excellent summary of the properties of Stirling numbers including 
recursion and closed form expressions for finding Stirling numbers is p re -
sented in a recent Bureau of Standards publication [3]. In this regard, it is 
interesting to note that members of special partitions of numbers described 
in the April, 1964, issue of this Journal [4] can also be used to develop 
Stirling numbers. A discussion of this latter method follows. 

2e DESCRIPTION OF COEFFICIENTS 

Riordan uses the notation S(n,k) and s(n,k) for Stirling numbers of the 
Second and Firs t Kinds, respectively, where the integers n and k are pos-
itive. Stirling numbers of the Firs t Kind, the sum of whose n and k is odd, 

n are negative. Adams chooses C,, where n is a negative or positive integer 
and k is zero or a positive integer. Although none of Adams! C!s are nega-
tive, a negative value for n identifies a C equal to a First Kind Stirling num-
ber, neglecting sign. For convenience of manipulation, the obviously sub-
scripted (R for Riordan, A for Adams) indicates n R , n . , k , k . r e -
place the n and kTs. By direct comparison, it can be seen that 
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k R = -nA 

n R = k R + kA 
(applies for Second Kind only), 

n R = nA \ 

n R = k R + kA 

applies for First Kind only). 

The above equations lead to 

(5) S(nR'kR> = C n R - k ' 

(6) 
llA Ck? = S^kA-nA'-nA)' 

(7) 
n R + k R n R 

s (n R ,k R ) = (-1) R R • C ^ . 

(8) 
n 2n -k 

C A = (-1) A A • s ( n , , n , - k . ) 'k , "A'"A A' 

Tabulations of a few Stirling numbers are given below. 

Table 1 S K . k - . ) 

n
R \ k R 

1 
2 
3 
4 
5 

1 

1 
1 
1 
1 
1 

2 

1 
3 
7 

15 

3 

1 
6 

25 

4 

1 
10 

5 

1 
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Table 2 s (n B ) k D ) 

n R \ k R 

1 
2 
3 
4 
5 

1 

1 
- 1 

2 
-6 
24 

2 

1 
-3 
11 

-50 
-6 1 
35 -10 

In Adams1 table, vertical entries for positive n . are, with appropriate 
signs, Fi rs t Kind Stirling numbers, and 45-degree, negative slope, diagonal 
entries for negative nA are Second Kind Stirling numbers. 

3. GENERATION OF SECOND KIND STIRLING NUMBERS 

The negative nA section of Adams' table suggests a numerical procedure 
by which Second Kind Stirling numbers can be generated simultaneously with 
the generation of members of the special partitions described in [ 4] . For 
example, in Table 3 consider a few column entries from Adams! table for n . 
= -4. Differences between the entries are included 

Table 3 

k . \ n . -4 Differences 

0 
1 
2 
3 

1 
10 
65 

350 

1 
9 

55 
285 

If the differences were known the table entries could be found easily. The dif-
ferences, however, do not stem from simple recursion formulas. If the man-
ner in which successive sets of Second Kind Stirling numbers are foundis 
investigated, it is seen that the differences are sums of products whose range 
is controlled by m. and k . . As an example from Table 3 (nA = -4, kA = 3) 
the products can be set up and sums formed vertically and horizontally as is 
shown in (9). 
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(9) 

1 2 
3 
4 

T+ 9 

2x2 
2x3 
2x4 
3x3 
•&x4 
4x4 

+ ~55~ + 

2x2x2 
2x2x3 
2x2x4 
2x3x3 
2x3x4 
2x4x4 
3x3x3 
3x3x4 
3x4x4 
4x4x4 
285 = 

Vertical Sums 

v 
350 

> Horizontal Sums 

The significant fact demonstrated by (9) is that exclusive of the initial Tbne,fT 

the multiplication signs, and the resultant summations, the array presented 
by (9) is identically that found in the development of the partition set 

PV(>2,<12|>1,<3|>2,<4) 

according to the methods described in [4] , For the purposes of this paper, 
the PV set designation implies that the set of partitions is arranged in col-
umns, each column consisting of partitions having exactly as many members 
as the column number. Thus, the set designation 

{ l , PV(>2,<12|>1,<3|>2,<4)} 

includes an initial fbneTf and the properly arranged partitions. 
In general, the set 

( l , PV(>2,<-n A k A |>d ,<k A |>2 ,<-n A )} 

when interpreted as in (9) yields Adams' 

c n A 
kA 

for negative n . . Through use of (1) and (2), it is seen that the Second Kind 
Stirling number S(n , k ) can be found from the set 

{l. PV(>2, <kR(nR - k R ) | >1 , ^ R - kR| ^2 ,<k R )} . 
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The method suggested above leads directly to 

kA 

or Sfn^jk-A An ALGOL language computer program for obtaining the part i-
tions described in [3] was developed as a result of student projects under the 
author's direction. It is obvious that only a slight modification of this program 
would be required to generate and store products (as the corresponding p a r -
tition is formed) needed to obtain C's or S!s directly as exemplified by (9). 

4. GENERATION OF FIRST KIND STIRLING NUMBERS 

Adams lists the following formulas for finding 

C0 , Ct , and C2 

The sum forms are applicable for nA positive., but the product forms apply 
A 

for n . positive or negative. 

nA 
(10) G0 = 1 , 

n n (n - 1) 
(11) Gi = 1 + 2 +'3 + • • • + (nA - 1) = - ^ - f 

n 
C2 = 1 x 2 + 1 x 3 + 1 x 4 + . . . + 1 x (nA - 1) 

+ 2 x 3 + 2 x 4 + . . . + 2 x(nA - 1) 

(12) + 3 x 4 + • • • + 3 x(nA - 1) 

+ 

+ (nA - 2 ) ( n A - l ) 

n A ( n A - l ) ( n A - 2 ) ( 3 n A - l ) 
24 

Although Adams gives no formula for k. > 2, (10), (11), and(12) suggest that 
tabulations of sums of products might be useful for an extension beyond k. = 
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2. This is indeed the case as can be demonstrated in an example in which nA 

= 5. Tabulations corresponding to the known formulas (10), (11), and (12) are 
listed below. For reasons given later, crossed-out dummy entries are included. 

(13) 

1 

1 = - p 5 

1 2 
3 
4 

1 + 9 = 10 = = C\ 

2 
3 
4 

9 + 
^ 

2 x 3 
2 x 4 
3-*-3 
3 x 4 
4 - * 4 

26 = 35 

Horizontal Sums 

Vertical 
Sums 

= C 

Consider the possible extensions beyond (13) for k. = 3 and k. = 4 shown 
in (14). 

(14) 

2x3 
2x4 

3x4 
4x4 

2x2x2 
2x2x3 
2x2x1 
2x3x3 
2x3x4 
2x1x1 
JXJXJ 
JXJX4 
3x4x4 
4x4x4 

26 + 24=50 = Cj} 

2x2x2 
2x2x3 
2x2x4 
2x3x3 
2x3x4 
2x4x4 

Ver t ica l 
Sums 

J X J X J * 

JX^tX1* 
A -gy A -wr-fA 

. 24 = CI 
-is. 

Horizontal Sums 

Again, note that the crossed-out entries do not contribute to a sum. The exten-
sions exemplified by (14) yield the correct C| and c | . 

It is seen that exclusive of the initial "ones'1 (where present), the multi-
plication signs, the crossed-out lines, and the resultant summations, the tabu-
lations of (13) and (14) are each a partition set of the type described earlier. 
Further, it is seen that only those entries with repeating members are crossed 
out. The success of (13) and (14) is not accidental. An investigation of the 
breakdown of Firs t Kind Stirling numbers reveals that the pattern of (13) and 
(14) is general. 
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Exclusion of the c r o s s e d - o u t en t r i e s changes a par t i t ion se t to one with 

non- repea t ing m e m b e r s . For identification, the designation changes to P V. 

One way of obtaining P V se t s would be to genera te PV se ts and ignore 

repea t ing m e m b e r par t i t ions . This p r o c e s s i s , of c o u r s e , inefficient and can 

be c i rcumvented as will be shown la ter . 

F o r the example given, the following impl icat ions can be exp res sed : 

, 5 _ 

(15) 

{1} 
( l , P u V ( > 2 , < 4 | > l , < l | > 2 , < 4 ) } - ^ C 5

1 -

( l , P V ( > 2 , < ' 8 | > 1 , < 2 | > 2 , < 4 ) } — ^ C 2
5 = 

(0 , P V ( > 4 , < 1 2 | > 2 , < 3 | > 2 f < 4 ) } - ^ £ 3 | = 

{0S P V ( > 6 , < 1 2 | > 3 , < 3 | > 2 , < 4)}—^Cf 

1 

10 

35 

50 

24 

For the genera l c a s e , the implicat ion is that 

(16) 

k A + 3 

2k. + 2 • V *2 V 
k A + 3 

2k. +2 M K 

I + 
k A + 3 

2kA + 2 

- A " 1 

: 2 , < ( n A - l ) U ^ C j 

( n A - l ) 

0 . 

>kA 

It can be observed from (16) that* 

does not exis t for k . > n . . The cor responding express ion for St i r l ing num-

b e r s of the F i r s t Kind i s found through applicat ion of (7) to (16) a s 

^Bracke t s [ ] except where obviously used for r e f e r ences a r e used in the c u s -
t o m a r y manner with r ea l n u m b e r s to indicate the g r e a t e s t in teger l e s s than 
o r equal to the number bracketed . See Uspensky and Heas le t [5]. 
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R k R + 3 

2n R 2 k R + 2 
R ~ \ 

2n R 2 k R + 2 < n R R 

(17) 
n R " 

n R -

n R -

k R 
- 1 

kR_ 

n R - X 

I ( n
R " 1) 

n R " k R 

^ R - ^ " 1 

R 

n R - k R + 3 

2 n R " 2 k R + 2 ^ n R " k R 

n R + k R 
^ 2 , < n R - 1 M - * ( - l ) K s ( n R , k R ) 

5. REDUCTION OF P V TO SIMPLER PV FORMS u 

As was indicated e a r l i e r , one way of obtaining the P V par t i t ions is 

f i r s t to genera te PV par t i t ions and then to r e t a in non-repea t ing m e m b e r p a r -

t i t ions. The repeat ing m e m b e r par t i t ions s e r v e only as devices for success ive 

genera t ion of par t i t ions . Equations (13) and (14) i l lus t ra te graphical ly the 

wastefulness of such a procedure . It i s poss ible to genera te s imp le r PV p a r -

t i t ions which eas i ly can be modified to yield the des i r ed P V par t i t ions . The 

method of doing this is desc r ibed below. While this method applies p a r t i c u l a r -

ly for the par t i t ions of this paper and is not intended to be genera l , it has the 

computational feature of genera t ing exact ly a s many PV par t i t ions a s a r e 

needed for convers ion to P V par t i t ions — no more ! 

A P V part i t ion applicable for this paper can be exp re s sed a s 

(18) P i V(>2c , < a b | > c , < b | > 2 , ^a) 

whether e i ther b = c alone o r b = c and b = c + 1, depending on whether 

the se t (1 o r 0, P V has one o r two columns pf par t i t ions . (See (15) for 

example). Assume that lb = c. If the PV designation applied for (18), the 

l a r g e s t (and last) b - m e m b e r par t i t ion would total ab and would appear as b 

a ? s , (a, a, • • • , a ) . The u subscr ip t , however, would not pe rmi t this par t i t ion, 

the c loses t approach being 

(a - b + 1, a - b + 2, 

However, (a - b + 1, a - b + 2, • • • , a) can be formed by m e m b e r addition of 
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(a - b + l , a - b + l , - - - , a - b + l) and ( 0 , 1 , 2, • • • , b - 1) . 

F o r a given b , 

(a - b + i , a - b + l , - - - , a - b + l) 

i s an acceptable l a s t par t i t ion in a one-par t i t ion column PV se t and has a 

g r e a t e s t m e m b e r a - b + 1 and the sum ab - b(b - 1). The lower l imi t s of the 

new PV designation r ema in the s a m e a s in (18). Thus , a m e m b e r - b y - m e m b e r 

addition of ( 0 , 1 , 2, • • * , b - 1) to the m e m b e r s of 

(19) P V ( > 2 s ^ a b - b(b - 1) | > b , < b | > 2 ? < 2 - b + 1) 

produces the d e s i r e d form of (18) where b = ce F o r the ca se of two columns 
of par t i t ions (i. e9 , b = c, b = c + 1), 

(20) P V ( > 2 c s < a c - c(c - l ) | > c , ^ c | > 2 s ^ a - c + 1) 

i s augmented by ( 0 , 1 , 2, • • • , c - 1) and 

(21) PV(>2(c + l ) < a ( c + 1) - c(c + l ) | > c + l s < c + l | > 2 , < a - c) 

i s augmented by ( 0 , 1 , 2 , - • * ,c) . An example for a = 4, b = 3 , c = 2 follows. 

P V ( > 4 S < 6 | > 2 9 ^ 2 | > 2 ? < 3 ) P V ( > 4 , < 1 2 | > 2 3 < 3 | > 2 3 < 4 ) 

2 .2 2 ,3 2 , 3 , 4 
(22) 2 ,3 + (0,1) — • 2 ,4 i 

3.3 3,4 I 

PV(>6,<6J>3,^3l>:2,<2) 1 
2 , 2 , 2 + (0 ,1 ,2) 

Compar i son of (22) with (14) shows the reduct ion in computation. 
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* * * • • 

ERATTA FOR 
FACTORIZATION OF 2 X 2 INTEGRAL MATRICES WITH DETERMINANT ± 1 

Gene B. Gale 
San Jose State Col lege, San Jose, Ca l i f . 

Please make the following co r rec t ions to "Fac tor iza t ion of 2x2 M a t r i c e s 

with Determinant ±1, " by Gene B. Gale, appear ing in the F e b r u a r y 1968 i s sue , 

Fibonacci Quar te r ly , pp. -3 — 2 2 , 

Page 1 

5 

5 

8 

9 

9 

9 
i l l 
U2 
12 
15 
16 

17 

Line! 

6 

- 8 

- 3 

5 

-1 

4 
-51 

-6 

6 

-4 

-9 

Reads 

d < 0 

c < d 

llru - s t J 

ad - be > ad - cd = (a - c)d \ 

a r + 1 \ 
c w I 
cd > 0 

N 

a r = ( a - l ) ( r - 1) 
d ( r F k + sW 

A2B 
ab - be 

bd 

Should Read 
d ^ 0 

c ^ d 
||ru| - |st|| 

ad - be > ad - cd = (a - c)d > 0 

r + 
d 

' ) 
c ,d ^ 0 

n 

a r - (a - l ) ( r - 1) 

d 

A, B 

ad - be 

( r F k + s F k - i > 

bd 
Continued on p . 112 


