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I. INTRODUCTION 

Some years ago Angus E„ Taylor and the author were looking for exam-
ples of operators for which spectra .could be determined and classified. In the 
course of this search we chanced upon a bounded linear operator F on the 
sequence space i1? defined by the infinite matrix (fji), 

f = ( 1 if i = j = l or i = l , j > l 
ij ( 0 otherwise 

This operator has the interesting property that the norms of its consecutive 
powers are consecutive Fibonacci numbers* which, as is well known* are 
defined recursively by 

f0 = 0, L = 1 and f = f + f , n > 2 . 0 5 1 n n-i n-2 

The infinite matrix representations of the n power of this operator have 
column vectors such that the first n+1 terms of these vectors are, in inverted 
orders truncated Fibonacci sequences. The spectrum consists of the unit disc 
together with the point 

i + yjjT 
2 

the positive zero of the polynomial P(X) = A2 - A - 1, sometimes called the 
"golden mean" which is well known to be the limit, as n becomes infinite of 

th th 
the positive n root of the n term of the Fibonacci sequence. We appro-
priately enough dubbed this operator the "Fibonacci Operator. " 

In this paper we define an operator-valued function F of a nonnegative 
real variable, such that for every nonnegative value of x there is associated 

15 
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with the number x a bounded linear operator F(x) on the sequence space /1# 

In addition, there corresponds to each nonnegative value of xt 
(1) a sequence jf, (x)} 
(2) a polynomial P (X) 

x 
(3) an infinite matrix representation (f. .(x)) for F(x). 
For the case x = 1, F(l) , {fk(l)|* Pi(X) and (f..(l)) are the Fibon-

acci operator, the Fibonacci sequence, the associated polynomial, and matrix 
representation, respectively,, For all other values of x, 0 < x ^ o o , F(x) and 
the entities referred to in (1), (2), and (3) above have interrelationships sim-
ilar to those possessed by their counterparts in the case x = 1. 

n . PRELIMINARY DEFINITIONS AND NOTATION 

The operators we shall consider will be bounded linear operators map-
ping the sequence space JL^ into itself. The space £t consists of the set of 
all absolutely convergent sequences of complex numbers f = {£.} under the 
norm defined by 

iifii-ftal. 
i=i 

It can be shown (see for example [l]) that every member, A, of the 
algebra [ ̂  J of bounded linear operators which map 11 into itself has a ma-
trix representation (a..), such that the uniform norm of A is given by 

00 

||A|| = sup £ Ja.. | . 
i=i 

If A is in [ i j , then the resolvent set of A, p(A), consists of the set 
of all complex X for which the operator (XI - A)"1, where I is the identity 
operator, exists as a bounded operator, and the range of XI - T is dense in 

A. 
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The spectrum of A, . cr(A), consists of the set of all complex numbers 
which do not belong to p(A). The spectral radius of A, |cr(A) | , is the radius 
of the smallest circle, with center at the origin, which contains cr(A). We 
shall have occasion to make use of the following facts* (see 2) 

(2.1) | <T(A)| = l i m | | A n | | l / n 

n->oo' 

(2„2) If | \ | > | c r ( A ) | we can represent (XI - A)"*1 by its Neumann 
expansion, 

00 

X n + 1 

n=i 

The function F which we wish to consider has for its domain the set of all non-
negative real numbers and its range is contained in [ i j . If we identify the 
values of F(x) with their matrix representations under the standard basis, it 
will be convenient to define F(x) as the sum of two matrices L and C(x). 

The infinite matrix L = {jt..) is defined by 

0 = / 1 ^ i - J = 
xi j f 0 otherwise 

When L is used as a left multiplier on a matrix A, we might call it a "lower-
ing matrix, M Its effect on A can be crudely described as.follows: Each row 
of A is lowered one step, and the empty first row is replaced by zeros, 

The infinite matrix C(x) = (c..(x)) is defined by 

0 if j < [ x] + 1 or i > 1 
if j = [ x] + 1 and i = 1 
if j > [ x] + 1 and i = 1 , 

c..(x) = j - x if j = [x] + 1 and i = 1 

where [x] denotes the greatest integer not greater than x, (Note that all 
entries of C(x) below the first row are zero,) This matrix could be described 
as "partial column summer,ff As a left multiplier of a matrix A = (a..), It 
produces the following effect In each column of A the elements below the 
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[x + l ] s t row are summed, to this is added (1 - x + [x]) times the entry in 
the [x + l ] s t rowand the totalis entered as the first row entry of the co r res -
ponding column of LAe All other entries in this column of LA are 0. 

We are now ready to state our main theorem. 

Ill, PRINCIPAL THEOREM 
Theorem 1. Let F(x) be the member of [ / J defined by the infinite 

matrix L + C(x)9 0 < x < :^)a With F(x) there are associated 
(1) a sequence jf ,(x)}, defined by 

0 if k = 0 
fk(x) = j 1 if 0 < k < [x + l ] 

W* + ( t X + Xl - X>fk-|x+i] « + <X - [^-[rt] « 
if k > [xj + 1 

and 
(2) a polynomial P (A), 

x 

PX(X) = { X [ x + l ] - ([x + 1] - x)|(X - 1) - 1 

such that the following relationships hold. 

(a) I Fn(x) || = fQH{x+2] (x) - ([x + 1] - x)fn+1(x) 

(x) 

k=o 
+ 1 

(b) -<r(F) = < X; P(X) = 0 or | X j < 1 1 

(c) &> (Vx) " ^ + 21 " x>fn-[rt] «} l / n = hF<x»| = J ^ > P(X)=o' 

(d) f.(x) = f[f) (X), j = 1, •••, k, n > [x + 1] l(j+l-k)nv 

where 
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Fk(x) = (S(x)). 

Statement (d) merely says that the first k entries in any column after 
the [ x + l ] s of the matrix F (x) are the truncated sequence { i } in reverse 
order. v t 

Before proceeding with the proofs we note that in case x is an integer, 
the sequence (tJx)} is a sequence of integers similar to the Fibonacci 
sequence; indeed {f, (1)} is the Fibonacci sequence and {f, (0)} starting with 
f^O) is the geometric progression with first term equal to land common ratio 
2„ In general, where x is an integer, the sequence {t (x)} has the following 
properties; 

(i) f0(x) = 0, ii(x) = f2(x) = . . . = fx+i(x) = 1 

f (x) = f (x) + f , ^ x (x) if n > x + 1 nv ' n - r ; n-(i+x)v ; 

(ii) w / x > = E fk(x) +1 
k=o 

(iii) l im {f (x)}l / n = sup | x | = | o r ( F ) | , 
n—>co n P(\)=0 

where 

P( \ ) = (\X+i - 1) (\ - 1) - 1 

(iv) W l ( x ) = HFn(xHI ' 

We now turn to the proof of our theorem. 
We shall let the matrix representation of Fn(x) be denoted by (f:^(x))„ 

However, to simplify the notation in the discussion that follows, we will omit 
the argument 
shall also let 
the argument x and represent Fn(x) and f.. (x) merely by F and f\ \ We 

= 1 - ( x - [x]) 
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i = £ + X = 1 + [x] 

With this notation the m a t r i x r ep resen ta t ion of F(x) has the appearances 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 € 1 1 1 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

where € appea r s in the f i r s t row of the t column. 
Since F = (L + C)F 9 we see from the descr ip t ion of the effects p r o -

duced by L and C a s left ope ra to r s that the k row of F i s the f i r s t row 

of F n " k + 1 for 1 k < n, k an in teger . That i s 

(3.1) 
(n) 

*kj 
f (n-i) 
Vl)3 

= f(n-k+i) 1 < k n. 

We a l so see that 

(3.2) 
rn) = I 1 if 
q I 0 if 

k = n + j 
Tq n and k ^ n + j 

With the unders tanding that if n < 0 then f.\' = 0 and f: ' = f. = 0 

we can s ta te the following lemma. 

L e m m a 18 

(a) f(n) 
lm €f (n-i) 

im 

n - £ - i 

5=i 

f(j) + f 
im i(m+n-i) 

if m and n a r e posi t ive integers,, 
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^ (n) = f(n-i) + €f(n-[) + _ f(n-£-i) 
1 ' im im im x ; im 

' i(m+n-i) i(m+n-2)' 

if m and n are positive integers and n > 2. 
Proof. Part (a) follows easily from the fact that 

.(n) = Y^f f(r 
1]^ Z ^ « ji 

3=1 

and formulas 3.1 and 3e28 Par t (b) is obtained by computing f' * from part 
(a) and.subtracting the result from the expression for v ' given in (a). 

Lemma 2. If n is an integer and n > 2 then 

f(n) = g./TT1xf(n-i) + f (n-i) ± l m gmhi + t1 ( m + 1 ) , 

where 

0 if m«< I 
g(m) = \ € if m = / 

1 if m > £ . 

Proof. The result follows easily from the fact that 

00 

f(n) =Y"f(n~i) 9 f 
i m Z^ y 3m 

3=1 

Lemma 3. If m9n and k are positive integers and m > k, then f j * 
> f ^ . If in addition k > £9 then f^ = f j ^ . 

Proof. This result follows from an inductive argument That the conclu-
sions of the lemma hold for n = 1 is evident From the induction hypotheses 
that they hold for n = j , it quickly follows from Lemma 2 that they hold for 
n = j + 1. 
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Since from Lemma 3, f y = f^ for all k and m such that k > £ 
and m > £s we make the following definition, 

Definition. 

f0 = 0S f =: $ (l+,\ if n is a positive integer. 

From the definitions of £ and € and Lemmas 1 and 39 it follows that 
\ f (x)} is the sequence defined in Par t 1 of the conclusion of Theorem 1. 

Lemma 4. The norm of F is given by 

k=0 
F n = 7 . fk + l 

Proof, Since 0 < € < 1 and all the entries of the first row of the 
matrix (f..) are nonnegative, it follows from part (b) of Lemma 1 that all the 
elements of the first row of the matrix (f:. ;) are nonnegative. From equa-

th 1^ th fn) 
tion 3.1 we see that the j component of the m column vector of (f.\ ') is 
given by 

f(n) = (n-j-M) 
jm 1m 9 J 

From this equation and equation 3.2 it follows since all the components are 
f(n; 
ij 

nonnegative that the it norm of the m column vector of (fj.') is given by 

3=1 

fjj) + 1 
lm 

From Lemma 3 we see that the £ 1 norm of the (£ + l ) s column vector of 
(f.. ) is greater than or equal to the ^ norm of any other column vector of 
that matrix. The definition of | |Fn| | and that of the sequence {f. } now imply 
that 
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n 

k=o 

This completes the proof of Lemma 40 

It is a simple matter to use the result part (b) of Lemma 1 to conclude 
that 

YJ fk + * " W + i ~ €fn+i * 
k=o 

This result together with Lemma 4 gives part (a) of part 2 of the conclusion of 
Theorem 2. 

Lemma 5, The formal inverse matrix (g...) of the matrix representation 
of XI - F is defined by 

where 

and 

blj = P(\j" — if j > i 
\ 2 

P ( \ ) = \l+1 --K - e\ - (1 - e) 

- A T : + - A r b . . if i > j 
Xl-J-H x l - l 1] 

x i - i lj 
b, . if i < j 
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Proof, The Neumann expansion for (XI-F)""1 converges provided | \ | > | c r ( F ) | . 
Since 

it is clear that the Neumann expansion for (XI - F)"1 converges provided | \ | 
> 2. We, however, are only using the Neumann expansion as a device to ob-
tain the formal matrix inverse of the matrix representation of (XI - F). If we 
let the matrix for (XI - F)""1 be denoted by (g..)9 then since 

^-F)_ 1 = £ + E ^ F * 

n=i X 

it follows that 

6.. ^ f . ( n ) 

SiJ X JL«. n+l 
n= i X 

But from 3.1 and 3,2 we see that; 

f(n) = 
ij 

.(n-i+i) . . . . ^ 
fJ. ' if 1 I < n, 

6. , . , x if i > n . i(j+n) 

Thus 

oo f(n-i+i) 

n=i ^ 
(3.3) gy = 

oo f(n-i+i) 

i-j+i ' E " ^ if * a J + 
X n=i V 
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If we now cons ide r the m a t r i x (g..) a s the sum of two m a t r i c e s (a. .) and 
i j i ] 

(b..) where 

(3.4) a.. : 1 

x i - j+ i 

0 if i <= j , 

if i ^ j . 

we see that 

00 f(n-i+i) 

n=i k 

If i > 1 we s ee that 

oo f(n"i + 1) oo f ( k ) 

A. 1 A. 
n=i k=i 

_ 1 Y ^ ij _ 1 ^ 
, i - i Zw ,k+i . i - i Dlj 
X k=i X X 

By using p a r t b of L e m m a 1, we can solve for va lues b , . a s follows; 

00 j?(k) £ 00 ^(k) 

b , . 
k=i k=2 

• 4 + L ^ jfc 
k=2 

or 
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f 
b i j x2 + x bij + ^ % +

 x*+i b ij 

e + - 4 ^ r if j * jL .£-j+2 ,^-j+S 

i if J - i . 

and therefore 

(3.6) \ = 
.1+1 

£+1 X -X - €X - (1 - c ) 

X« + fl - 6) , 
,i-j+3 

X"1 

if 3 

if j > £ 

Remembering that g.. = a.. +b . . the conclusion of the lemma follows from 
equations 3.3, 3.4, 3.5, and 3.6. 

From Lemma 5 it is easy to see that the matrix (g..) can be schemati-
cally presented as the linear combination of two matrices as follows: 

<v 

1_ 1 
X 

xk x k " * 

0 0 

0 0 
X 
i 1 1 0 

0 0 

\%) h % • • 

h(1W2)
(t ) 

X X " 

x2 x2 

h^W^) 
X3 X3 

• h%) 1 1 

h(£)(e) 1 1 
X X X 

h^fc) 1 1 
x2 x2 x2 

h<®(€) 1 1 
x3 x3 x3 

where 

hO>(0 = Xe + (1 - e) 
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is a factor of each element in each of the first L columns of the second 
matrix. The first of the above matrices is the matrix representation of 

00 

k=i 

and the value of its norm is 

""1 = Z ^ U | k 
k=i IM 

if X > 1. The value of the norm of the second matrix is 

max 

W - - l + ' x - i 

provided | X | > 1. 
From these facts we can infer that (XI - F)"1 i s defined and a bounded 

operator on X^ into JLV provided | x | > l and X. is not a zero of P(X), and 
that (XT - F ) - 1 i s either not defined or i s unbounded if X is a zero of P(X) or 
I X I < 1. We thus conclude that the resolvent set of F, 

P(F) = {X | x | > l and P(X) t 0 , 

and therefore the spectrum of F, 

cr(F) = {x I x l s r l or P(X) = o} . 
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This proves part 2.b of our theorem since if we recall that X ?- [x + l] and 
€ = ([x + l] - x) we see that the polynomial P(\) is precisely the polynomial 
P (X) defined in the theorem by: 

x 

p a > = { \ t x + 1 ] - ( [ x + i] - x ) } ( \ - i) 

Lemma 6. For any given value of x, 0 < x < oo, P (X) has precisely-
one real zero, r , with modulus greater than 1 and 1 < r < 2. 

X X 
Proof. As a function of the real variable £ 

Px(£) = ( £ Z - e)(f - 1) - 1 = f£+1 - {l - ei - (1 - e) 

and 

It is a simple matter to verify that P ! (£) > 0 if £ > 1 and P (1) = - 1 . 
From this we infer that P (£) has precisely one zero greater than 1 and 

x 
since P (2) > 0, that M s zero lies strictly between 1 and 2 if x ^ 0, If 
£ < -1 and JL is odd then Pf (f) < 0 and P (-1) > 0. If £ < -1 and X is 

x x 
even, then Pf (£) > 0 and P (-1) > 0. From these facts it follows that P (£) 

X X -X-

has no negative zeros with modulus greater than 1. This completes the proof 
of the lemma. 

Lemma 7- If r is the positive real zero of P v ( \ ) , 1 < r < 2, and 
X X A 

if fju is any other zero of P„(\) , then \\i\ < r . 
x x . . 

Proof, The proof is by contradiction. If we assume P fix) = 0 and \\x\ > r > 1. then L " > r ^ and therefore u. - e > r f - €> 0 since 0 < 
x 9 in x ir-i x 

e < 1. From this last result the following chain of inequalities follows: 

x 

hence 
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1 + T—h— < 1 + —~—- = r 
H -€ J- - x 

v - € 
X 

since 

and therefore 

r x " x €r x " ( 1 ~ €) = ° s 

1 + I I x 

or 

since 

1 + 
|1 - € 

< 1 + 
|n'-« 

But m. < r is a contradiction of our assumption that |j. > r . 
X X 

From Lemmas 6 and 7 and the definition of spectral radius* we immedi-
ately deduce the second equality in part 2.c.of the conclusion of Theorem 1„ 
That i s , 

k(F(x))| sup I 
P (X)=0 

xv ' 

M 

The first equality of part 2ec of the conclusion of Theorem 1 is an immediate 
consequence of part 29a of Theorem 1 and the fact, 2.1, that 

|a(F(x))l = lim [|Fn(x)| | l /n . 

We have now completed the proof of Theorem le 
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IV. A PROPERTY OF |a(F(x))| 

We conclude this paper with the following theorem. 
Theorem 2. The spectral radius of F(x) is a strictly decreasing con-

tinuous function of x, x > 0, and 

(a), xHmJcr(F(x))| = 1 

(b) xllmo|a(F(xJ)| = 2 . 

Proof. From Theorem 1 we know that 

|a(F(x))| = r x 

where r is the only real root of P (i), |f | > 1, and 1 < r < 2. Let us 
X X X 

assume that n is a positive integer and 

n - 1 < x < y < n . 

It now follows that r > r, ^ The proof is by contradiction. 
Assume r ^ r . Then x y 

and 

P (r ) = (rn - c )(r - 1) - 1 = 0 

where 

e x = [x + l] - x . 

From these equations and the assumption that r < r , it follows that 
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or 

n n _̂  ^ n r - r < € - e = x - y ^ 0 y x x y J 

and therefore r ^ r which is a contradiction to our assumption that r ^ r 0 y x F x y 
Since we have shown that r is strictly decreasing as x increases and 

is therefore strictly increasing as x decreases for 

n - 1 < x < n , 

we see that if 

n - 1 <* y < n, 

then the following limits exists 

lim , r = a and lim r = o . 
x-*-y+ x x-* -y- x P 

Therefore, since 

x ^ y 6 * = e y • 

x ^ y +
 p

x(rx> = V a ) = ° x -y - P«tr*) = p y w ' 

But since 

has only one real root, namely r . it follows that r = a = fB and therefore 
,y «y 

lim r = r x - ^ y x y 
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or r is a continuous function of x on x 

n - 1 < x ^ n . 

It is riot difficult to see that 

lim r - r x - • n x n 

where n is any positive integer. Firs t it is clear that as 

x-n+' W ^ C - ^ ^ " 1 ' - ^ 0 

and 

ex = (n + 1) - x , 

provided 

x < n + 1 , 

hence 

x l i m n + P x ( r x ) = (7
n+1 - l)(y - 1) - 1 = 7 ^ - y n + 1 - y = 0 = Pn(y) 

where 

lim , r = y . x—*-n+ x 

Similarly as x -#-n , 

W = (rx - ^K - 1) - 1 = 0 

and 

€x - n - x, provided x > n - 1, hence 
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x l im n - P x ( r x ) = (S n - 0)(6 - 1) - 1 = 8 n + 1 - 8 n - 1 = 0 = - % — , 

where 

lim - r = 6 . 
X—IHQ. X 

Since both y and 6 must lie between 1 and 2 and P (£), I ^ H u has p re -
cisely one real root we infer that y = 5 or r is continuous at x = n for 

x 
n an arbitrary positive integer. 

It now follows that r is a continuous function of x for all x > 0 and x 
r is a strictly decreasing function of x* 

Finally we shall show that 

For assume 

lim r = 1 
x-*-oo X 

lim r 
x-*-oo x 

where r > le In this case 

L M . e \ lim Jr1- J - € > = lim — x -4^00 J x x V x -^oo r 

since for all x >* 0 

r L J _ € = 
x x r - 1 

x 

But it is clear that 

X X 
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becomes a r b i t r a r i l y l a rge a s x approaches infinity and there fore cannot have 

r - 1 

a s a l imit . This cont rad ic t s our assumpt ion that r > 1. 

That 

Him r = 2 x - ^ 0 x 

follows immedia te ly from the fact that 

P0(A) = X2 - 2A . 
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• • * • • 
A CURIOUS PROPERTY OF A SECOND FRACTION 

Mar jor ie Bicknell 
A. C. Wilcox High Schools Santa Cla ra , California 

In the Apri l , 1968 Fibonacci Qua r t e r ly (p. 156), J . Wlodarski d i scussed 
some p r o p e r t i e s of the fraction 878/323 which approx imates e. Cons ider the 
a p p r o x i m a t i o n of rr c o r r e c t to six dec imal p laces given by 355/113 = 
3.141592+. The sum of the digi ts of the n u m e r a t o r i s 13, and of the denomina-
tor , 5. 13/5 = 1 + 8/5, o r one added to the bes t approximation to the "Golden 
Ra t io n using two one-digi t n u m b e r s . Also, 

355 = 300 + 55 
113 100 + 13 J 

where 55 and 13 a r e Fibonacci n u m b e r s . 
Taking 355/226 a s an approximat ion of TT/2 l eads to the observat ion that 

355 = 377 - 22 
226 233 - 7 

where 377/233 approx imates the golden ra t io and 22/7 approx imates n, and 
377 and 233 a r e Fibonacci n u m b e r s . 


