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H-148 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida 

Prove or disprove: There exists a positive integer m such that 

m times 

is composite for all integers n > 5. 

H-149 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 

For s = o- + it let 

P(s) = 2 P"S > 

where the summation is over the pr imes. Set 

56 



Feb . 1969 ADVANCED PROBLEMS AND SOLUTIONS 57 

oo 

y~/(n)n~S = [H-P(s)]-1 , 
n=l 

00 

\^b(n)n"s = [l-P(s)J"1 . 
n=l 

Dete rmine the coefficients a(n) and b(n). 

H-150 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada 

Show that 

n - 1 p 

25Z) 2 u^-1 = F4n+(n/3)(5n* ~ l4)' 
p= l q=i I ^ T 

where F is the n Fibonacci number . 

H-151 Proposed by L. Carlitz, Duke University, Durham, N. Carolina 

A. Put 

WW 

2 , 2 ' \ ^ A m n 
( 1 - a x - b x y - c y ) = ^ A

m , n x y 

m9n=0 

Show that 
00 _ 1 

\ ^ A n n x n = k - 2bx+ (b2 - 4ac)x 2 > *9 

B^ Put 
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00-

(1 - ax - bxy - cy)~x = } M B m n x m y n 

m,n=0 

Show that 

X X , ^ = {<l-bx)2-4aox}-* 
n=0 

H-152 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

Let m denote a positive integer and F the n Fibonacci number. 
Further let |ck}°° be the sequence defined by 

,m ^m „ m ~ 
1 k ^ - ' n n ' n >n=1 

TV1 1 

2 ~ copies 

Prove that ]c, [ is complete; i . e . , show that every positive integer, n, K k=l 
has at least one representation of the form 

n = 7 a f eck , 

where p is a positive integer and 

a. = 0 or 1 if k = 1, 2, • • •, p - 1 

a = 1 
P 

C.f. V. E. Hoggatt, J r . , and C. King, Problem E1424, American Mathemat-
ical Monthly, Vol. 67 (1960) r p . 593 and J . L. Brown, J r . , "Note on Complete 
Sequences of Integerss

n American Mathematical Monthly, Vol. 67 (1960), pp. 
557-560. 
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SOLUTIONS 

POWER PLAY 

H-109 Proposed by George Ledin, Jr., San Francisco, Calif. 

Solve 

x 2 + y 2 + 1 = 3xy 

for all integral solutions and consequently derive the identity 

F 2 + F 2 + 1 = 3F F 

Solution by H. V. Krishna, Manipal Engineering College, Manipal, India 

Let the equation in question be expressed as 

(1) (x-3y/2)2 - 5(y/2)2 = -1 . 

The general solution of (1) is therefore given by 

(2) x - (3y/2) = i {(p + VEq)2^1 + (p - VSq)2*"1} 

(y/2) = l/<2V5){fe+ VSqJ^^-Cp-VSq)211"1} 

where (p5q) is a particular solution of (1), 
Hence (2) reduces to y = F 2 ^ and x = (1/2)(L2n-l+ 3 F2n-l^ f o r p = 

J and q = | . 
On using L 2 n _ 1 + F 2 n m l = 2F2 n, 

x = i { 2 ( F 2 n + F 2 n ^ ) } = F 2 n + 1 , 

whence the desired identity follows for n = 3(k + 1). 

Also Solved by A. Shannon. 
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TRIG OR TREAT 

H-lll Proposed by John L. Brown, Jr., Pennsylvania State University, State College, Pa. 

Show that 

[n/2 ] , 
L. = | | | l + 4 c o s 2 ^ l ( r f ) > f o r n > l 

k=l h=1 V 

Solution by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

We know f rom the solution of P r o b l e m H-64 (Fibonacci Quar te r ly , Vol. 

5 , F e b . 1967, p . 75), that 

K n IB odd, then 

2n+l 

L 2n+l 

n i ) 2 n + 1 i > 

j = l ' k=n+2 l ; 

.h-tM.S*±$j±„ 
2n+l 

i= l < ' k=n+2 l 

Lett ing j = (2n + 2 - k) in the second product , we get 
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- fr[i - - f&^-ffr1 - « - {'- %0$i 
5=1 

(1) 

-TT{ 1 + 4 cos 2 2j 
2n + 

3=1 

1 7T ) 
T " - 2 > 

Similar ly S 

(2) 2n T T < 1 + 4 cos 
1=1 

2 £L 
2n 2 f 

Hence f rom (1) and (2) we have the r equ i r ed r e s u l t . 

Also solved by Charles Wall, Douglas bind, and David Zeitlin. 

VIVA LA DIFFERENCE 

H-112 Proposed by L. Carlitz, Duke University, Durham, N. Carolina. 

a) 

b) 

c) 

d) 

Show that , for n > 1, 
.5 T 5 , . n L° - L , = 5L ^ L L ,(2LT - 5 ( - l ) n ) n+1 n n - 1 n+1 n n - l x n ^ ' ' 

.2 
Jn 
.2 x- .- • F - F ° - = 5F , . F F - ( 2 F * + ( - l ) n ) 

n+1 n n - 1 n+1 n n-V n v ' ' 
L 7 - L 7 - L 7

 n = 7L X 1 L L , (2L2 - 5 ( - l ) n ) 2 
n+1 n n - 1 n+1 n n - l v n x ' ' 

F 7 - F 7 - F 7 - = 7F . , - F F , (2F 2 + ( - l ) n ) 2 
n+1 n n -1 n+1 n n - l x n v ' ' 

Solution by the proposer. 

F o r p a r t s c) and d) , take x = L , y = L 1 in the identity 

( x + y ) - x - y 2 2 * 
7xy (x + y) (x + xy + y ) 

Since 

61 

we get 

S imi la r ly , s ince 

L 2 + L L - + L 2
 n = 2 L 2 - 5 ( - l ) n , n n n - 1 n - 1 n x ' ' 

L 7 - L 7 - L 7 = 7L , n L L . (2L2 - 5 ( - l ) n ) 2 
n+1 n n - 1 n+1 n n - 1 1 n v ' ' 
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F 2 + F F - + F 2 - = 2F 2 + ( - l ) n , n n n-1 n-1 n v ' * 

we get 

F
7 - F

7 » F 7 = 7F . - F F - (2F2 + ( - l ) n ) 2 . n+1 n n-1 n+1 n n-V n v ' ' * 

Parts a) and b) follow in a similar manner, by selecting x = L , • y = L - ; 
x = F , y = F - i n the identity 

(x+ y)5 - x5 - y5 = 5xy(x+ y)(x2 + xy + y 2 ) . 

Also solved by Charles Wall 

MINOR EXPANSION 

H-117 Proposed by George Ledin, Jr., San Francisco, Calif. 

Prove 

Fn+3 Fn+2 Fn+1 F n 
F • F F F 

n+2 n+3 n n+1 
F F F F n+1 n n+3 n+3 F F F F n n+1 n+2 " n+3 

F F 
2n+6 2n 

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa. 

The determinant (first evaluated in 1866) 

abed 

bade 

cdab 

deb a 

(a - b - c + d) (a ~ b + c - d) (a + b - c - d)(a+b+c + d) 

In this case the product is 

V V l + V l > W F n + 4 + F n + 2 > 
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from the recurrence 

F . - = F + F , . n+1 n n-1 

The identities 

and 

L = F . - + F -n n+1 n-1 

F 0 = F L 2n n n 

now complete the proof. 

Also solved by David Zeitlin, A. Shannon, D. Jaiswal, J. Biggs, F, Parker, S. Lajos, 
H. Krishna, and Stanley Rabinowitz 

GOOD COMBINATION 

H-119 Proposed by L. Carlitz, Duke University, Durham, N. Carolina 

Put 

H(D,,n,p, - E E s <-«,+i+k('r)(!*+k)(k T-i ' ) ( - r - r J ) 
|=0 j:=0 k=0 

Yn - j + p - k \ / p - k+ i \ 

Show that II(mfn9p) = 0 unless m ? n ,p are all even, and that 
min(mjn,p) 

r=0 
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(The formula 

\2 
H(2mf2n) ' ™ ( - ; ° ) 2 • 

where 

m n 

H«m>n>. E E <v+i (' v) (m 7 + J ) ( ' » - rJ) (m "• - r J ) 
1=0 j=0 

is proved in the Fibonacci Quarterly, Vol. 4 (1966), pp. 323-325.) 
Solution by the proposer. 

As a special case of a more general identity (SLAM Review, Vol. 6 (1964) 
pp. 20-30, formulas (3.1) ), we have 

l l * " ' , l 6 

l l L2 l3 l4 l5 l6 
u l u 2 U3 U4 U5 U6 

[ l - U]_ - u2 - u3 - u 4 - u5 - u6 + U l u 4 + u;1u5 + u2u4 + u2u5 + u2u( 

+ u3u5 + u3u6 + u4u6 - U l u 3 u 5 - u 2 u 4 u 6 J 2 - 4U lu2u3u4u5u6 J" 5 

In this identity, take 

U4 = ~ U r U5 = " V U6 = ~U3 

Changing the notation slightly we get 
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^ H(m,n,p) u m v n vP = {(1 - u 2 - v 2 - w 2 ) 2 + 4u 2 v 2 w'' 2 2 2 P 

m,n,p=o 

2r 2 r 2 r 
" w 

00 00 

E . n v r / 2 r \ 2 r 2 r 2 r V ^ / 2 r + n V : (-1) J u v w 2 ^ ( n )<U 

i-O V 7 n=0 V 7 

2 2 2 n 
+v +w ) 

r=0 

2 r 2 r 2 r w 
v w X 

v \ ^ (2r + i + j + k)T. 2i 2j 2k 
Z ^ (2r)UT„jlkl 

U,k=0 

oo min(m,n9p) 
V ^ 2m 2n 2p \ T * , i x r w 

= Z.J u v w 2-f ( } x 

m9njp=0 r=0 

x (m + n + p - r ) l 
rf

e r i (m - r ) l (n - r ) l (p - r ) i 

Comparing coefficients we get 

min(m9n,p) 

H(2m,2n.2p) = £ ( - l ) r
 r , r L ( l f - + r H ( 7 - " r ) l ^ - r)l 

r=0 

It does not s e e m poss ib le to s u m the s e r i e s on the r ight , 


