CONVERGENCE OF THE COEFFICENTS IN A RECURRIMG POWER SERIES
 JOSEPH ARKIN
 Nanuet, New York

1. INTRODUCTION

In this paper we use the following notation

$$
\left(\sum_{w=0}^{\infty} c_{w} x^{w}\right)^{k}=\sum_{w=0}^{\infty} c_{w}^{(k)} x^{w}
$$

(For convenience, we shall write c_{w} instead of $c_{w}^{(1)}$.)
We define

$$
\sum_{w=0}^{f} b_{w} x^{w}=F(x) \neq 0
$$

for a finite f ,

$$
\sum_{w=0}^{t} a_{w} x^{w}=\prod_{w=1}^{m}\left(1-r_{w} x\right)^{d}=Q(x)
$$

for finite t and m, where the $d_{w} \neq 0$ and are positive integers. The $r_{w} \neq$ 0 and are distinct and we say $\left|r_{1}\right|$ is the greatest $|r|$ in the $\left|r_{w}\right|$.
2. THEOREM 1

If

$$
F(x) / Q(x)=\sum_{w=0}^{\infty} u_{w} x^{w}
$$

[Feb.
then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|u_{n} / u_{n-j}\right| \quad(\text { for a finite } j=0,1,2, \cdots) \tag{2.1}
\end{equation*}
$$

converges to $\left|r_{1}^{j}\right|$, where the $r_{w} \neq 0$ in $Q(x)$ are distinct with distinct moduli and $\left|r_{1}\right|$ is the greatest $|r|$ in the $\left|r_{w}\right|$.

Proof. It has been shown by Poincare [1] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n} / u_{n-1} \tag{2.2}
\end{equation*}
$$

converges to some root (r) in $\mathrm{Q}(\mathrm{x})$. (We must then prove that this root (r) in $Q(x)$ is $\left|r_{1}\right|$.

Let

$$
\begin{equation*}
M(x)=\prod_{w=1}^{m}\left(1-r_{w} x\right)^{p_{w}} \tag{2.3}
\end{equation*}
$$

where the p_{w} are positive integers or $=0$ and

$$
\mathrm{d}_{1}+\mathrm{p}_{1}=\mathrm{d}_{2}+\mathrm{p}_{2}=\cdots=\mathrm{p}_{\mathrm{w}}+\mathrm{d}_{\mathrm{w}}=\mathrm{k} \quad(\mathrm{k}=1,2,3, \cdots)
$$

for a finite $w=1,2,3, \cdots, m$.
Then,

$$
M(x) Q(x)=\prod_{w=1}^{m}\left(1-r_{w} x\right)^{k}=\phi_{k}(x)
$$

so that
(2.4) $\quad F(x) M(x) / Q(x) M(x)=F(x) M(x) / \phi_{k}(x)$

$$
=\sum_{w=0}^{\infty} u_{w} x^{w}=\sum_{w=0}^{\infty} c(k, w) x^{w},
$$

where it is evident

$$
u_{n}=c(k, n)
$$

Now let

$$
\phi_{k}(x)=\sum_{w=0}^{v} c_{w}^{(k)} x^{w} \quad \text { (where } v \text { is finite) }
$$

where combining this with (2.4), we write

$$
\begin{align*}
F(x) M(x) / \phi_{k-1}(x) & =\sum_{w=0}^{\infty} c(k-1, w) x^{w} \tag{2.5}\\
& \left.=\left(\sum_{w=0}^{v} c w^{w}\right)\left(\sum_{w=0}^{\infty} c(k, w) x^{w}\right)\right),
\end{align*}
$$

and combining coefficients leads to
(2.5.1)

$$
c(k-1, n)=\sum_{w=0}^{v} c(k, n-w) c_{w}=\sum_{w=0}^{v} u_{n-w} c_{w},
$$

In (2.5.1), we replace k with $k+1$ (where $k=1,2,3, \cdots$) where combining this result with (2.2) leads to

$$
\lim _{n \rightarrow \infty}|c(k+1, n) / c(k+1, n-1)| \text { converges to some root }(x) \text { in } Q(x) .
$$

For convenience, we write the convergence as

$$
\begin{equation*}
c(k+1, n)=g_{k+1} c(k+1, n-1) \tag{2.5.2}
\end{equation*}
$$

Combining (2.5.1) with k replaced by $\mathrm{k}+1$ with (2.5.2), it is easily shown, that for a finite v, we have
(2.5.3)

$$
\begin{aligned}
c(k, n) / c(k, n-1) & =g_{k} \\
& =\sum_{w=0}^{v} c(k+1, n-w) c_{w} / \sum_{w=0}^{v} c(k+1, n-w-1) c_{w} \\
& =g_{k+1}
\end{aligned}
$$

so that

$$
\begin{equation*}
\mathrm{g}_{\mathrm{k}+1}=\mathrm{g}_{\mathrm{k}}=\cdots=\mathrm{g}_{1} \tag{2.5.4}
\end{equation*}
$$

Thus to complete the proof of Theorem 1, it remains to show that

$$
\left|g_{1}\right|=\left|r_{1}\right|
$$

Then we consider the following (we refer to (2.3))

$$
\begin{equation*}
(\phi(x))^{-1}=\prod_{w=1}^{m}\left(1-r_{w} x\right)^{-1}=\sum_{w=0}^{\infty} e(m, w) x^{w} \quad(\text { for a finite } m) \tag{2.6}
\end{equation*}
$$

for the convergence properties of $e(m, n) / e(m, n-1)$, where the $\left|r_{w}\right|$ are distinct and $\left|r_{1}\right|$ is the greatest root.

NOTE. For convenience, we write

$$
e(m, n) / e(m, n-j)=r_{1}^{j} \quad(\text { for a finite } j=0,1,2, \cdots)
$$

in place of

$$
\lim _{n}|e(m, n) / e(m, n-j)| \quad \text { converges to }\left|r_{1}^{j}\right|
$$

For $m=1$, we have

$$
\begin{equation*}
\left(1-r_{1} x\right)^{-1}=\sum_{w=0}^{\infty} e(1, w) x^{w} \tag{2.7}
\end{equation*}
$$

where

$$
\mathrm{e}(1, \mathrm{n})=\mathrm{r}_{1}^{\mathrm{n}}
$$

so that

$$
e(1, n) / e(1, n-j)=r_{i}^{j}
$$

For $m=2$, we have

$$
\begin{equation*}
\left[\left(1-r_{1} x\right)\left(1-r_{2} x\right)\right]^{-1}=\sum_{w=0}^{\infty} e(2, w) x^{w} \tag{2.8}
\end{equation*}
$$

where

$$
\mathrm{e}(2, \mathrm{n})=\left(\mathrm{r}_{1}^{\mathrm{n}+1}-r_{2}^{\mathrm{n}+1}\right) /\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)
$$

so that

$$
\mathrm{e}(2, \mathrm{n}) / \mathrm{e}(2, \mathrm{n}-\mathrm{j})=\mathrm{r}_{1}^{\mathrm{j}}
$$

It now remains to consider for finite $\mathrm{m}=3,4,5, \cdots$, let

$$
\begin{equation*}
\left(1-\sum_{s=0}^{t-1} a_{S} x^{t-s}\right)^{-1}=\prod_{s=1}^{t}\left(1-r_{S} x\right)^{-1}=1+\sum_{s=1}^{\infty} U_{S} x^{s} \tag{2.9}
\end{equation*}
$$

for a finite $t=3,4,5, \cdots$, where $U_{0}=1$.

Equating the coefficients in this leads to

$$
\begin{equation*}
U_{n}=\sum_{s=1}^{t} a_{t-s} U_{n-s} \quad\left(U_{0}=1\right) \tag{2.10}
\end{equation*}
$$

and

$$
U_{1}=U_{0} a_{t-1}, \quad U_{2}=U_{1} a_{t-1}+U_{0} a_{t-2},^{a, \cdots} ; U_{t}=\sum_{s=0}^{t-1} U_{s} a_{s}
$$

Also, since in (2.9), we have

$$
\prod_{s=1}^{t}\left(1-r_{s} x\right)=1-\sum_{s=0}^{t-1} a_{s} x^{t-s}
$$

we may write

$$
\begin{equation*}
\prod_{s=1}^{t}\left(x-r_{s}\right)=x^{t}-\sum_{s=0}^{t-1} a_{s} x^{s}=0 \tag{2.11}
\end{equation*}
$$

We now combine (2.10) with (2.11) and write

$$
\begin{equation*}
x^{t}=U_{1} x^{t-1}+\sum_{s=2}^{t}\left(U_{s}-\sum_{r=1}^{s-1} U_{r} a_{t+r-s}\right) x^{t-s} \tag{2.12}
\end{equation*}
$$

Multiplying (2.12) by x and combining the result with

$$
U_{1} x^{t}=U_{1} \sum_{s=0}^{t-1} a_{s} x^{s}
$$

in (2.11) leads to

$$
\begin{align*}
x^{t+1}=U_{2} x^{t-1} & +\sum_{r=0}^{t-3}\left(U_{r+3}-\sum_{s=0}^{r} U_{r+2-s} a_{t-s-1}\right) x^{t-r-2} \tag{2.13}\\
& +U_{1} a_{0} .
\end{align*}
$$

Now, multiplying (2.13) by x and combining the result with

$$
U_{2} x^{t}=U_{2}\left(\sum_{s=0}^{t-1} a_{s} x^{s}\right)
$$

in (2.11), we then have

$$
\begin{align*}
x^{t+2}=U_{3} x^{t-1} & +\sum_{r=0}^{t-3}\left[\left(U_{r+4}-\sum_{s=0}^{r} U_{r+3-s} a_{t-s-1}\right) x^{t-r-2}\right] \tag{2.14}\\
& +a_{0} U_{2}
\end{align*}
$$

We continue in the exact way we found (2.13) and (2.14) for $n-1$ steps to get

$$
\begin{gather*}
x^{t+n-1}=U_{n} x^{t-1}+\sum_{r=0}^{t-3}\left[\left(U_{n+r+1}-\sum_{s=0}^{r} U_{n+r-s^{t-s-1}} a_{t-s}\right) x^{t-r-2}\right] \tag{2.15}\\
+U_{n-1} a_{0}=U_{n} x^{t-1}+R(x)+U_{n-1} a_{0} .
\end{gather*}
$$

We now continue (2.15) with (2.11) to get the following t equations

$$
r_{1}^{t+n-1}=U_{n} r_{1}^{t-1}+R\left(r_{1}\right)+U_{n-1} a_{0}
$$

$$
\begin{equation*}
r_{t}^{t+n-1}=U_{n} r_{t}^{t-1}+R\left(x_{t}\right)+U_{n-1} a_{0} \tag{2.16}
\end{equation*}
$$

Next, we consider the t equations obtained from (2.16). These t equations in the t unknown can be solved by Cramer's rule to obtain

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}} \mathrm{D}_{2}=\mathrm{D}_{1}(\mathrm{n}) \tag{2.17}
\end{equation*}
$$

where $D_{1}(n)$ and D_{2} are the determinants given below:

$$
\begin{align*}
& D_{1}(n)=\left|\begin{array}{ccccc}
r_{1}^{t+n-1} & r_{1}^{t-2} & \cdots & r_{1} & 1 \\
\vdots & \vdots & : .: & \vdots & \vdots \\
r_{t}^{t+n-1} & r_{t}^{t-2} & \cdots & r_{t} & 1
\end{array}\right| \tag{2.18}\\
& D_{2}=\left|\begin{array}{ccccc}
r_{1}^{t-1} & r_{1}^{t-2} & \cdots & r_{1} & 1 \\
\vdots & \vdots & \therefore: & \vdots & \vdots \\
r_{t}^{t-1} & r_{t}^{t-2} & \cdots & r_{t} & 1
\end{array}\right| \tag{2.19}
\end{align*}
$$

We now replace n with $n-1$ in (2.17) to get

$$
\begin{equation*}
U_{n-1} D_{2}=D_{1}(n-1) \tag{2.20}
\end{equation*}
$$

and dividing (2.17) by (2.20), we get

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}} / \mathrm{U}_{\mathrm{n}-1}=\mathrm{D}_{1}(\mathrm{n}) / \mathrm{D}_{1}(\mathrm{n}-1) \tag{2.21}
\end{equation*}
$$

Since the $r_{t} \neq 0$ and are distinct, then one root (say $\left|r_{1}\right|$ is greater than the other roots, and we write

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}} / \mathrm{U}_{\mathrm{n}-1}=\left(\mathrm{D}_{1}(\mathrm{n}) / \mathrm{r}_{1}^{\mathrm{t}+\mathrm{n}-2}\right) /\left(\mathrm{D}_{1}(\mathrm{n}-1) / \mathrm{r}_{1}^{\mathrm{t}+\mathrm{n}-2}\right) \tag{2.22}
\end{equation*}
$$

Now in (2.22) we let r_{1}^{t+n-2} (in the numerator) divide every term of the first column in (2.18) and $\mathrm{r}_{1}^{\mathrm{t}+\mathrm{n}-2}$ (in the denominator) divide every term in the first column of (2.18) (with n replaced by $n-1$). Then if we let $n \rightarrow \infty$ it is evident that
(2.23)

$$
\lim _{\mathrm{n}} \mathrm{li}_{\infty}\left|\mathrm{U}_{\mathrm{n}} / \mathrm{U}_{\mathrm{n}-1}\right|=\left|\mathrm{r}_{1}\right|
$$

Now for a finite t we write

$$
\lim _{\mathrm{n}}^{\rightarrow \infty}\left|\mathrm{U}_{\mathrm{n}-\mathrm{j}} / \mathrm{U}_{\mathrm{n}-\mathrm{j}-1}\right|=\left|\mathrm{r}_{1}\right| \quad(\mathrm{j}=0,1,2, \cdots, \mathrm{t}-1),
$$

so that

$$
\begin{equation*}
\lim _{\mathrm{n}}\left|\mathrm{U}_{\mathrm{n}} / \mathrm{U}_{\mathrm{n}-\mathrm{t}}\right|=\left|\mathrm{r}_{1}^{\mathrm{t}}\right| \tag{2.24}
\end{equation*}
$$

Multiplying the $F(x)$ in (1) with

$$
\sum_{s=0}^{\infty} U_{s} x^{s}
$$

in (2.9), we write

$$
\begin{equation*}
\left(\sum_{w=0}^{f} b_{w} x^{w}\right)\left(\sum_{s=0}^{\infty} U_{s} x^{s}\right)=\sum_{s=0}^{\infty} c_{s} x^{s} \tag{2.25}
\end{equation*}
$$

where comparing the coefficients we have

$$
\begin{equation*}
C_{n}=\sum_{s=0}^{f} U_{n-s} b_{s} \tag{2.26}
\end{equation*}
$$

Now, since f is finite, and by the results in (2.23), we write

$$
C_{n}=r_{1} \sum_{s=0}^{f} U_{n-s-1} b_{s}=r_{1} C_{n-1}
$$

where combining this with the $r_{t} \neq 0$ and are distinct (so that we may add that the r_{t} have distinct moduli), leads to the completion of the proof for Theorem 1.

From (2.7), (2.8), and (2.17), the following corollary is immediate:
Corollary. If

$$
\prod_{s=1}^{t}\left(1-r_{s} x\right)^{-1}=\sum_{s=0}^{\infty} U_{s} x^{s} \quad\left(U_{0}=1\right)
$$

where the $r_{s} \neq 0$ and are distinct, then
(2.27) It is always possible to solve for the $U_{n}(n=0,1,2, \cdots)$ as a function of the r_{s}.

SECTION 3

Let

$$
\left(1-\sum_{w=1}^{t} a_{w} x^{w}\right)^{-k}=\prod_{w=1}^{t}\left(1-r_{w} x\right)^{-k}=\sum_{w=0}^{\infty} c_{w}^{(k)} x^{w}
$$

$\left(\mathrm{c}_{0}^{(\mathrm{k})}=1\right.$ and $\left.\mathrm{k}=1,2,3, \cdots\right)$ for a finite $\mathrm{t}=2,3,4, \cdots$ and the given roots $\mathrm{r}_{\mathrm{w}} \neq 0$ and are distinct. We also define

$$
S(x)=\sum_{w=1}^{t} \sum_{r=w}^{t} a_{r} c_{n+w-r} x^{w-1}=0
$$

and

$$
b=\sum_{w=2}^{t} a_{w} x_{1}^{w-2}
$$

where ${ }^{\star} x_{1} \neq 0$ and is a root in $S(x)=S\left(x_{1}\right)=0$.
We then have the following:
Theorem 2. If

$$
\begin{aligned}
c_{0}=1, \quad c_{1}=a_{1} c_{0}, \quad c_{2} & =a_{1} c_{1}+a_{2} c_{0}, \cdots \\
\ldots, c_{t} & =\sum_{w=0}^{t-1} a_{w+1} c_{t-w-1}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{j} & =a_{1}(k+n-j) \quad(j=1,2,3, \cdots, n) \\
q_{m+1} & =b(n-m)(2 k+n-m-1) \\
& (m=1,2,3, \cdots, n-1)
\end{aligned}
$$

then
(3.1)

$$
n c_{n}^{(k)} / c_{n-1}^{(k)}=E_{n} / G_{n} \quad(k, n=1,2,3, \cdots)
$$

where E_{n} and G_{n} are the determinants given below.
(3.1.1) $\quad E_{n}=\left|\begin{array}{lllllllll}p_{1} & q_{2} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & p_{2} & q_{3} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & p_{3} & q_{4} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & p_{4} & q_{5} & \cdots & 0 & 0 & 0 \\ 0 & \cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1 & p_{n-1} & q_{n} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & p_{n}\end{array}\right|$

[^0]\[

G_{n}=\left|$$
\begin{array}{lllllllll}
p_{2} & q_{3} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \tag{3.1.2}\\
-1 & p_{3} & q_{4} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & p_{4} & q_{5} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & p_{5} & q_{6} & \cdots & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots & . & \cdot & \cdot \\
0 & 0 & 0 & 0 & 0 & \cdots & -1 & p_{n-1} & q_{n} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & p_{n}
\end{array}
$$\right|
\]

Proof. Let

$$
\begin{equation*}
1=\left(1-\sum_{w=1}^{t} a_{w} x^{w}\right)\left(\sum_{w=0}^{n} c_{w} x^{w}\right) \quad(\text { for a finite } n), \tag{3.2}
\end{equation*}
$$

where the a_{w} and the c_{w} are identical to those in (3). Then multiplying and combining the terms in (3.2) leads to $S\left(x_{1}\right)=S(x)=0$ in (3).

Now, taking each side of (3.2) to the $\mathrm{k}^{\text {th }}$ power, we write

$$
\begin{equation*}
1^{k}=\left(1-\sum_{w=1}^{t} a_{w} x^{w}\right)^{k}\left(\sum_{w=0}^{n} c_{w}^{(k)} x^{w}+J(x)\right) \tag{3.3}
\end{equation*}
$$

(where, of course, x_{1} is a root in (3.3)).
Using the corresponding values in (3), we write (3.3) as

$$
\begin{equation*}
1=\left(1-a_{1} x-b x^{2}\right)^{k}\left(\sum_{w=0}^{n} c_{w}^{(k)} x^{w}+J(x)\right) \tag{3.3.1}
\end{equation*}
$$

Differentiation of (3.3.1) leads to

$$
k\left(a_{1} x+2 b x^{2}\right)\left(\sum_{w=0}^{n} c_{n}^{(k)}+J(x)\right)=\left(1-a_{1} x-b x^{2}\right)\left(\sum_{w=1}^{n} n c_{n}^{(k)} x^{n}+w(x)\right)
$$

and by comparing coefficients, we conclude that

$$
\begin{equation*}
n c_{n}^{(k)}=a_{1}(k+n-1) c_{n-1}^{(k)}+b(2 k+n-2) c_{n-2}^{(k)} \tag{3.4}
\end{equation*}
$$

for

$$
\mathrm{k}=2,3, \cdots, \mathrm{n}=2,3, \cdots, \mathrm{c}_{0}^{(\mathrm{k})}=1 \text { and } \mathrm{c}_{1}^{(\mathrm{k})}=\mathrm{a}_{1} \mathrm{k}
$$

When we divide (3.4) by $c_{n-1}^{(k)}$, we get

$$
\frac{n c_{n}^{(k)}}{c_{n-1}^{(k)}}=a_{1}(k+n-1)+\frac{b(2 k+n-2)(n-1)}{\frac{(n-1) c_{n-1}^{(k)}}{c_{n-2}^{(k)}}} \quad(n, k=2,3, \cdots)
$$

which in turn, along with $c_{0}^{(\mathrm{k})}=1$ and $c_{1}^{(\mathrm{k})}=\mathrm{a}_{1} \mathrm{k}$, implies (along with the values of p and q in (3)),

$$
\begin{equation*}
\frac{n c_{n}^{(k)}}{c_{n-1}^{(k)}}=p_{1}+\frac{q_{2}}{p_{2}}+\frac{q_{3}}{p_{3}}+\cdots+\frac{q_{n-1}}{p_{n-1}}+\frac{q_{n}}{p_{n}}=K(n) \tag{3.5}
\end{equation*}
$$

We complete the proof of Theorem 2 with Euler's statement [2]

$$
\mathrm{K}(\mathrm{n})=\mathrm{E}_{\mathrm{n}} / \mathrm{G}_{\mathrm{n}}
$$

and we resolve for the case when $k=1$ with (2.27).
Corollary. In

$$
\prod_{w=1}^{t}\left(1-r_{w} x\right)^{-k}=\left(1-\sum_{w=1}^{t} a_{w} x^{w}\right)^{-k}=1+\sum_{w=1}^{\infty} c_{w}^{(k)} x^{w}
$$

it is always possible to solve for

$$
\begin{equation*}
n c_{n}^{(\mathrm{k})} / \mathrm{c}_{\mathrm{n}-1}^{(\mathrm{k})}=\mathrm{K}(\mathrm{n})=\mathrm{E}_{\mathrm{n}} / \mathrm{G}_{\mathrm{n}} \quad(\mathrm{k} \text { and } \mathrm{n}=2,3, \cdots) \tag{3.6}
\end{equation*}
$$

when $\mathrm{t}=2,3,4$, or 5 , if the $\mathrm{r}_{\mathrm{w}} \neq 0$ and are distinct.
Proof. In (2.27), it is seen that the c_{n} maybe determined. Now, since $t-1=1,2,3$, or 4 , then the roots (each root is a function of the c_{n}) in $S(x)$ (in 3) may always be found, so that we will obtain values for the p and q. We then complete the proof of the corollary by observing that E_{n} and G_{n} are both functions of the p and q.

In conclusion: We solve when $t=1$ and we write

$$
\left(1-r_{x}\right)^{-k}=\sum_{w=0}^{\infty} d_{w}^{(k)} x^{w} \quad\left(d_{0}^{(k)}=1, \quad r \neq 0\right)
$$

Now, differentiating, we have

$$
\operatorname{xkr}\left(\sum_{w=0}^{\infty} d_{w}^{(k+1)} x^{w}\right)=\sum_{w=1}^{\infty}{ }_{w} d_{w}^{(k)} x^{w}
$$

and comparing the coefficients leads to

$$
\mathrm{nd}_{\mathrm{n}}^{(\mathrm{k})}=\mathrm{d}_{\mathrm{n}-1}^{(\mathrm{k}+1)} \mathrm{r}^{\mathrm{k}}
$$

so that

$$
\prod_{w=1}^{n} w d_{w}^{(k+n-w)}=r^{n} \prod_{w=0}^{n-1}(k+n-w-1) d_{w}^{(k+n-w)}
$$

and we then have

$$
d_{n}^{(k)}=r^{n}(k+n-1)!/ n!(k-1)!
$$

REFERENCES

1. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1960, p. 526.
2. G. Chrystal, Textbook of Algebra, Vol. II, Dover Publications, Inc., New York, 1961, p. 502.

The author wishes to thank L. Carlitz and V. E. Hoggatt, Jr. for their encouragement.
[Continued from p. 40.]
10. V. E. Hoggatt, Jr., "Fibonacci Numbers and Generalized Binomial Coefficients," Fibonacci Quarterly, 5 (1967), pp. 383-400.
11. Dov Jarden, "The Product of Sequences with a Common Linear Recursion Formula of Order 2," publ. in Recurring Sequences, Jerusalem, 1958, pp. 42-45. Original paper appeared in Hebrew in Riveon Lematematika, 3 (1949), pp. 25-27; 38, being a joint paper with Th. Motzkin.
12. Dov Jarden, "Nullifying Coefficients," Scripta Mathematica, 19(1953), pp. 239-241.
13. Eugene E. Kohlbecker, "On a Generalization of Multinomial Coefficients for Fibonacci Sequences," Fibonacci Quarterly, 4 (1966), pp. 307-312.
14. S. G. Mohanty, "Restricted Compositions," Fibonacci Quarterly, 5 (1967), pp. 223-234.
15. Roseanna F. Torretto and J. Allen Fuchs, "Generalized Binomial Coefficients," Fibonacci Quarterly, 2 (1964), pp. 296-302.
16. Morgan Ward, "A Calculus of Sequences," Amer. J. Math., 58 (1936), pp. 255-266.
17. Stephen K. Jerbic, "Fibonomial Coefficients - A Few Summation Properties," Master's Thesis, San Jose State College, San Jose, Calif. , 1968.

[^0]: *It should be noted that since the $a^{\prime} s$ are constant for a fixed t, that the root x_{1} will be determined as a variable, since it is a function of the c_{n} and will, of course, change values for different n.

