CONVERGENCE OF THE COEFFICIENTS IN A RECURRING POWER SERIES

JOSEPH ARKIN Nanuet, New York

1. INTRODUCTION

In this paper we use the following notation

$$\left(\sum_{w=0}^{\infty} c_w x^w\right)^k = \sum_{w=0}^{\infty} c_w^{(k)} x^w$$

(For convenience, we shall write c_w instead of $c_w^{(1)}$.) We define

$$\sum_{w=0}^{f} b_{w} x^{w} = F(x) \neq 0$$

for a finite f,

$$\sum_{w=0}^{t} a_{w} x^{w} = \prod_{w=1}^{m} (1 - r_{w} x)^{d_{w}} = Q(x)$$

,

for finite t and m, where the $d_{W} \neq 0$ and are positive integers. The $r_{W} \neq 0$ and are distinct and we say $|r_{1}|$ is the greatest |r| in the $|r_{W}|$.

2. THEOREM 1

If

$$F(x)/Q(x) = \sum_{w=0}^{\infty} u_w x^w$$
,

then

(2.1)
$$\lim_{n \to \infty} \left| u_n / u_{n-j} \right| \quad \text{(for a finite } j = 0, 1, 2, \cdots \text{)}$$

converges to $|\mathbf{r}_1^j|$, where the $\mathbf{r}_w \neq 0$ in Q(x) are distinct with distinct moduli and $|\mathbf{r}_1|$ is the greatest $|\mathbf{r}|$ in the $|\mathbf{r}_w|$.

Proof. It has been shown by Poincare [1] that

$$(2.2) \qquad \qquad \underset{n \longrightarrow \infty}{\lim} \quad u_n / u_{n-1}$$

converges to some root (r) in Q(x). (We must then prove that this root (r) in Q(x) is $|\mathbf{r}_1|$.)

Let

(2.3)
$$M(x) = \prod_{W=1}^{m} (1 - r_W x)^{p_W}$$

where the p_{W} are positive integers or =0 and

$$d_1 + p_1 = d_2 + p_2 = \cdots = p_W + d_W = k$$
 (k = 1, 2, 3, ...)

for a finite $w = 1, 2, 3, \cdots, m$.

Then,

$$M(x)Q(x) = \prod_{W=1}^{m} (1 - r_W x)^k = \phi_k(x)$$

so that

(2.4)
$$F(x)M(x)/Q(x)M(x) = F(x)M(x)/\phi_{k}(x)$$

$$= \sum_{W=0}^{\infty} u_{W} x^{W} = \sum_{W=0}^{\infty} c(k, W) x^{W}$$

,

where it is evident

$$u_n = c(k, n)$$
 .

Now let

$$\phi_k(x) = \sum_{w=0}^{v} c_w^{(k)} x^w$$
 (where v is finite) ,

where combining this with (2.4), we write

(2.5)
$$F(x)M(x)/\phi_{k-1}(x) = \sum_{W=0}^{\infty} c(k-1, W)x^{W}$$
$$= \left(\sum_{W=0}^{V} c_{W}x^{W}\right) \left(\sum_{W=0}^{\infty} c(k, W)x^{W}\right)$$

and combining coefficients leads to

(2.5.1)
$$c(k-1,n) = \sum_{w=0}^{v} c(k,n-w)c_{w} = \sum_{w=0}^{v} u_{n-w}c_{w}$$
,
 $k = 2, 3, 4, \cdots$.

In (2.5.1), we replace k with k+1 (where $k = 1, 2, 3, \dots$) where combining this result with (2.2) leads to

 $\lim_{n \longrightarrow \infty} |c(k+1,n)/c(k+1,n-1)| \text{ converges to some root (r) in } Q(x).$

For convenience, we write the convergence as

(2.5.2)
$$c(k+1,n) = g_{k+1}c(k+1,n-1)$$
.

1969]

,

Combining (2.5.1) with k replaced by k + 1 with (2.5.2), it is easily shown, that for a finite v, we have

(2.5.3)
$$c(k, n)/c(k, n - 1) = g_k$$

$$= \sum_{w=0}^{v} c(k + 1, n - w)c_{w} / \sum_{w=0}^{v} c(k + 1, n - w - 1)c_{w}$$
$$= g_{k+1} ,$$

so that

(2.5.4)
$$g_{k+1} = g_k = \cdots = g_1$$

Thus to complete the proof of Theorem 1, it remains to show that

 $|g_1| = |r_1|$.

Then we consider the following (we refer to (2.3))

(2.6)
$$(\phi(x))^{-1} = \prod_{W=1}^{m} (1 - r_W x)^{-1} = \sum_{W=0}^{\infty} e(m, W) x^{W}$$
 (for a finite m)

for the convergence properties of e(m,n)/e(m,n-1), where the $|r_w|$ are distinct and $|r_1|$ is the greatest root.

NOTE. For convenience, we write

$$e(m,n)/e(m,n-j) = r_1^j$$
 (for a finite $j = 0, 1, 2, \dots$),

in place of

$$\lim_{n \to \infty} e(m, n) / e(m, n - j) | \text{ converges to } |r_1^j|$$

For m = 1, we have

(2.7)
$$(1 - r_1 x)^{-1} = \sum_{W=0}^{\infty} e(1, W) x^{W}$$
,

where

$$e(1, n) = r_1^n$$
,

so that

$$e(1,n)/e(1,n-j) = r_1^j$$
.

For m = 2, we have

(2.8)
$$[(1 - r_1 x) (1 - r_2 x)]^{-1} = \sum_{W=0}^{\infty} e(2, W) x^{W}$$
.

where

$$e(2, n) = (r_1^{n+1} - r_2^{n+1})/(r_1 - r_2)$$
,

so that

$$e(2,n)/e(2,n-j) = r_1^j$$
.

It now remains to consider for finite $m = 3, 4, 5, \cdots$, let

(2.9)
$$\left(1 - \sum_{s=0}^{t-1} a_s x^{t-s}\right)^{-1} = \prod_{s=1}^{t} (1 - r_s x)^{-1} = 1 + \sum_{s=1}^{\infty} U_s x^s$$
,

for a finite $t = 3,4,5, \cdots$, where $U_0 = 1$.

.

.

Equating the coefficients in this leads to

(2.10)
$$U_n = \sum_{s=1}^t a_{t-s} U_{n-s}$$
 $(U_0 = 1)$,

and

$$U_1 = U_0 a_{t-1}$$
, $U_2 = U_1 a_{t-1} + U_0 a_{t-2}$, $U_t = \sum_{s=0}^{t-1} U_s a_s$

$$\prod_{s=1}^{t} (1 - r_s x) = 1 - \sum_{s=0}^{t-1} a_s x^{t-s} ,$$

we may write

(2.11)
$$\frac{1}{\sum_{s=1}^{t} (x - r_s)} = x^t - \sum_{s=0}^{t-1} a_s x^s = 0$$

We now combine (2.10) with (2.11) and write

(2.12)
$$x^{t} = U_{t}x^{t-1} + \sum_{s=2}^{t} \left(U_{s} - \sum_{r=1}^{s-1} U_{r}a_{t+r-s} \right) x^{t-s}$$

Multiplying (2.12) by x and combining the result with

$$U_1 x^t = U_1 \sum_{s=0}^{t-1} a_s x^s$$

in (2.11) leads to

(2.13)
$$x^{t+1} = U_2 x^{t-1} + \sum_{r=0}^{t-3} \left(U_{r+3} - \sum_{s=0}^{r} U_{r+2-s} a_{t-s-1} \right) x^{t-r-2} + U_1 a_0.$$

Now, multiplying (2.13) by x and combining the result with

$$U_{2}x^{t} = U_{2}\left(\sum_{s=0}^{t-1} a_{s}x^{s}\right)$$

in (2.11), we then have

(2.14)
$$x^{t+2} = U_3 x^{t-1} + \sum_{r=0}^{t-3} \left[\left(U_{r+4} - \sum_{s=0}^{r} U_{r+3-s} a_{t-s-1} \right) x^{t-r-2} \right] + a_0 U_2$$
.

We continue in the exact way we found (2.13) and (2.14) for n-1 steps to get

$$(2.15) \qquad x^{t+n-1} = U_n x^{t-1} + \sum_{r=0}^{t-3} \left[\left(U_{n+r+1} - \sum_{s=0}^r U_{n+r-s} a_{t-s-1} \right) x^{t-r-2} \right] \\ + U_{n-1} a_0 = U_n x^{t-1} + R(x) + U_{n-1} a_0 .$$

We now continue (2.15) with (2.11) to get the following t equations

$$r_1^{t+n-1} = U_n r_1^{t-1} + R(r_1) + U_{n-1} a_0$$
,

(2.16)

$$r_t^{t+n-1} = U_n r_t^{t-1} + R(r_t) + U_{n-1} a_0$$
.

1969]

CONVERGENCE OF THE COEFFICIENTS

Next, we consider the t equations obtained from (2.16). These t equations in the t unknown can be solved by Cramer's rule to obtain

(2.17)
$$U_n D_2 = D_1(n)$$
,

where $D_1(n)$ and D_2 are the determinants given below:

(2.18)
$$D_{1}(n) = \begin{vmatrix} r_{1}^{t+n-1} & r_{1}^{t-2} & \cdots & r_{1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r_{t}^{t+n-1} & r_{t}^{t-2} & \cdots & r_{t} & 1 \end{vmatrix}$$
(2.19)
$$D_{2} = \begin{vmatrix} r_{1}^{t-1} & r_{1}^{t-2} & \cdots & r_{1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r_{t}^{t-1} & r_{t}^{t-2} & \cdots & r_{t} & 1 \end{vmatrix}$$

We now replace n with n - 1 in (2.17) to get

$$(2.20) U_{n-1} D_2 = D_1 (n-1) ,$$

and dividing (2.17) by (2.20), we get

(2.21)
$$U_n / U_{n-1} = D_1(n) / D_1(n-1)$$

Since the $r_t \neq 0$ and are distinct, then one root (say $|r_1|$ is greater than the other roots, and we write

(2.22)
$$U_n / U_{n-1} = (D_1(n) / r_1^{t+n-2}) / (D_1(n-1) / r_1^{t+n-2})$$

Now in (2.22) we let r_1^{t+n-2} (in the numerator) divide every term of the first column in (2.18) and r_1^{t+n-2} (in the denominator) divide every term in the first column of (2.18) (with n replaced by n - 1). Then if we let $n \rightarrow \infty$ it is evident that

(2.23) $\lim_{n \to \infty} \left| U_n / U_{n-1} \right| = \left| r_1 \right| .$

Now for a finite t we write

$$\lim_{n \to \infty} \left| U_{n-j} / U_{n-j-1} \right| = \left| r_1 \right| \quad (j = 0, 1, 2, \cdots, t-1)$$

so that

1969]

(2.24)
$$\lim_{n \to \infty} \left| U_n / U_{n-t} \right| = \left| r_1^t \right|$$

Multiplying the F(x) in (1) with

$$\sum_{\mathbf{s}=\mathbf{0}}^{\infty} \mathbf{U}_{\mathbf{s}} \mathbf{x}^{\mathbf{s}}$$

in (2.9), we write

(2.25)
$$\left(\sum_{W=0}^{f} b_{W} x^{W}\right) \left(\sum_{S=0}^{\infty} U_{S} x^{S}\right) = \sum_{S=0}^{\infty} C_{S} x^{S} ,$$

where comparing the coefficients we have

(2.26)
$$C_n = \sum_{s=0}^{f} U_{n-s} b_s$$

Now, since f is finite, and by the results in (2.23), we write

$$C_n = r_1 \sum_{s=0}^{f} U_{n-s-1} b_s = r_1 C_{n-1}$$
,

where combining this with the $r_t \neq 0$ and are distinct (so that we may add that the r_t have distinct moduli), leads to the completion of the proof for Theorem 1.

From (2.7), (2.8), and (2.17), the following corollary is immediate: <u>Corollary</u>. If

$$\frac{1}{\prod_{s=1}^{t}} (1 - r_s x)^{-1} = \sum_{s=0}^{\infty} U_s x^s \quad (U_0 = 1) ,$$

where the $r_s \neq 0$ and are distinct, then

(2.27) It is always possible to solve for the
$$U_n$$
 $(n = 0, 1, 2, \cdots)$
as a function of the r_s .

SECTION 3

Let

$$\left(1 - \sum_{w=i}^{t} a_{w} x^{w}\right)^{-k} = \prod_{w=i}^{t} (1 - r_{w} x)^{-k} = \sum_{w=0}^{\infty} c_{w}^{(k)} x^{w}$$

 $(c_0^{(k)} = 1 \text{ and } k = 1, 2, 3, \cdots)$ for a finite $t = 2, 3, 4, \cdots$ and the given roots $r_w \neq 0$ and are distinct. We also define

$$S(x) = \sum_{W=1}^{t} \sum_{r=W}^{t} a_{r}c_{n+W-r}x^{W-1} = 0$$

and

$$b = \sum_{W=2}^{t} a_{W} x_{1}^{W-2}$$

where $*x_1 \neq 0$ and is a root in $S(x) = S(x_1) = 0$. We then have the following:

Theorem 2. If

$$c_0 = 1$$
, $c_1 = a_1c_0$, $c_2 = a_1c_1 + a_2c_0$, \cdots

...,
$$c_t = \sum_{w=0}^{t-1} a_{w+1} c_{t-w-1}$$

and

$$p_{j} = a_{1}(k + n - j) \quad (j = 1, 2, 3, \dots, n) ,$$

$$q_{m+1} = b(n - m)(2k + n - m - 1) \quad (m = 1, 2, 3, \dots, n - 1)$$

then

(3.1)
$$\operatorname{nc}_{n}^{(k)}/\operatorname{c}_{n-1}^{(k)} = \operatorname{E}_{n}/\operatorname{G}_{n}^{(k)}$$
 $(k, n = 1, 2, 3, \cdots)$,

where E_n and G_n are the determinants given below.

(3.1.1)	E _n =	P1	\mathbf{q}_2	0	0	0	•••	0	0	0
		-1	\mathbf{p}_2	\mathbf{q}_3	0	0			0	0
		0	-1	\mathbf{p}_3	q_4	0	· · · · · · · · · · ·	0	0 0	0
		0	0	-1	P4	\mathbf{q}_{5}		0	0	0
		·	•	•	•	•	• • •	•	•	•
		0	0	0	0	0	• • •	-1	p _{n-i}	q _n
		0	0	0	0	0	•••	0	-1	р _п

*It should be noted that since the a's are constant for a fixed t, that the root x_1 will be determined as a variable, since it is a function of the c_n and will, of course, change values for different n.

1969]

CONVERGENCE OF THE COEFFICIENTS

0 0 0 0 0 • • • 0 p_2 \mathbf{q}_3 -1 0 0 0 0 0 p_3 • • • \mathbf{q}_4 -1 0 0 \mathbf{p}_4 • • • 0 0 0 \mathbf{q}_{5} $G_n =$ (3.1.2)-1 • 0 0 $\mathbf{p}_{\mathbf{5}}$ 0 0 0 $\mathbf{q}_{\mathbf{6}}$ • • • • • • • • • • . 0 $\mathbf{q}_{\mathbf{n}}$ -1 0 0 0 0 • • • p_{n-1} 0 0 0 0 . . . -1 0 0 ^pn

Proof. Let

(3.2)
$$1 = \left(1 - \sum_{W=1}^{t} a_{W} x^{W}\right) \left(\sum_{W=0}^{n} c_{W} x^{W}\right) \quad \text{(for a finite n)},$$

where the a_w and the c_w are identical to those in (3). Then multiplying and combining the terms in (3.2) leads to $S(x_1) = S(x) = 0$ in (3). Now, taking each side of (3.2) to the k^{th} power, we write

(3.3)
$$1^{k} = \left(1 - \sum_{w=1}^{t} a_{w} x^{w}\right)^{k} \left(\sum_{w=0}^{n} c_{w}^{(k)} x^{w} + J(x)\right) (k = 2, 3, \cdots),$$

(where, of course, x_1 is a root in (3.3)).

Using the corresponding values in (3), we write (3.3) as

(3.3.1)
$$1 = (1 - a_1 x - b x^2)^k \left(\sum_{W=0}^n c_W^{(k)} x^W + J(x) \right)$$

Differentiation of (3.3.1) leads to

$$k(a_{1}x + 2bx^{2})\left(\sum_{w=0}^{n} c_{n}^{(k)} + J(x)\right) = (1 - a_{1}x - bx^{2})\left(\sum_{w=1}^{n} nc_{n}^{(k)}x^{n} + W(x)\right)$$

52

1969]

and by comparing coefficients, we conclude that

(3.4)
$$nc_n^{(k)} = a_1(k + n - 1)c_{n-1}^{(k)} + b(2k + n - 2)c_{n-2}^{(k)}$$

for

$$k = 2, 3, \cdots, n = 2, 3, \cdots, c_0^{(k)} = 1 \text{ and } c_1^{(k)} = a_1 k$$
.

When we divide (3.4) by $c_{n-1}^{(k)}$, we get

$$\frac{nc_{n}^{(k)}}{c_{n-1}^{(k)}} = a_{1}(k + n - 1) + \frac{b(2k + n - 2)(n - 1)}{\frac{(n - 1)c_{n-1}^{(k)}}{c_{n-2}^{(k)}}} \quad (n, k = 2, 3, \dots),$$

which in turn, along with $c_0^{(k)} = 1$ and $c_1^{(k)} = a_1 k$, implies (along with the values of p and q in (3)),

(3.5)
$$\frac{\operatorname{nc}_{n}^{(k)}}{\operatorname{c}_{n-1}^{(k)}} = p_{1} + \frac{q_{2}}{p_{2}} + \frac{q_{3}}{p_{3}} + \cdots + \frac{q_{n-1}}{p_{n-1}} + \frac{q_{n}}{p_{n}} = K(n) .$$

We complete the proof of Theorem 2 with Euler's statement [2]

$$K(n) = E_n / G_n ;$$

and we resolve for the case when k = 1 with (2.27).

Corollary. In

$$\frac{1}{\prod_{W=1}^{W=1}} (1 - r_W x)^{-k} = \left(1 - \sum_{W=1}^{t} a_W x^W\right)^{-k} = 1 + \sum_{W=1}^{\infty} c_W^{(k)} x^W,$$

it is always possible to solve for

CONVERGENCE OF THE COEFFICIENTS

(3.6)
$$\operatorname{nc}_{n}^{(k)} / \operatorname{c}_{n-1}^{(k)} = K(n) = \operatorname{E}_{n} / \operatorname{G}_{n}$$
 (k and $n = 2, 3, \cdots$)

when t = 2, 3, 4, or 5, if the $r_w \neq 0$ and are distinct.

<u>Proof.</u> In (2.27), it is seen that the c_n maybe determined. Now, since t - 1 = 1, 2, 3, or 4, then the roots (each root is a function of the c_n) in S(x) (in 3) may always be found, so that we will obtain values for the p and q. We then complete the proof of the corollary by observing that E_n and G_n are both functions of the p and q.

In conclusion: We solve when t = 1 and we write

$$(1 - r_x)^{-k} = \sum_{w=0}^{\infty} d_w^{(k)} x^w \qquad (d_0^{(k)} = 1, r \neq 0)$$
.

Now, differentiating, we have

$$\operatorname{xkr}\left(\sum_{W=0}^{\infty} d_{W}^{(k+1)} x^{W}\right) = \sum_{W=1}^{\infty} \operatorname{wd}_{W}^{(k)} x^{W}$$

and comparing the coefficients leads to

$$\operatorname{nd}_n^{(k)} = \operatorname{d}_{n-1}^{(k+1)} r^k$$

so that

$$\prod_{w=1}^{n} wd_{w}^{(k+n-w)} = r^{n} \prod_{w=0}^{n-1} (k+n-w-1)d_{w}^{(k+n-w)}$$

and we then have

$$d_n^{(k)} = r^n (k + n - 1)! / n! (k - 1)!$$

54

[Feb.

REFERENCES

- 1. L. M. Milne-Thomson, <u>The Calculus of Finite Differences</u>, Macmillan and Co., Ltd., London, 1960, p. 526.
- 2. G. Chrystal, <u>Textbook of Algebra</u>, Vol. II, Dover Publications, Inc., New York, 1961, p. 502.

The author wishes to thank L. Carlitz and V. E. Hoggatt, Jr. for their encouragement.

[Continued from p. 40.]

- 10. V. E. Hoggatt, Jr., "Fibonacci Numbers and Generalized Binomial Coefficients," Fibonacci Quarterly, 5 (1967), pp. 383-400.
- Dov Jarden, "The Product of Sequences with a Common Linear Recursion Formula of Order 2," publ. in <u>Recurring Sequences</u>, Jerusalem, 1958, pp. 42-45. Original paper appeared in Hebrew in <u>Riveon Lematematika</u>, 3 (1949), pp. 25-27; 38, being a joint paper with Th. Motzkin.
- 12. Dov Jarden, "Nullifying Coefficients," <u>Scripta Mathematica</u>, 19(1953), pp. 239-241.
- 13. Eugene E. Kohlbecker, "On a Generalization of Multinomial Coefficients for Fibonacci Sequences," Fibonacci Quarterly, 4 (1966), pp. 307-312.
- S. G. Mohanty, "Restricted Compositions," <u>Fibonacci Quarterly</u>, 5(1967), pp. 223-234.
- 15. Roseanna F. Torretto and J. Allen Fuchs, "Generalized Binomial Coefficients," Fibonacci Quarterly, 2 (1964), pp. 296-302.
- Morgan Ward, "A Calculus of Sequences," <u>Amer. J. Math.</u>, 58 (1936), pp. 255-266.
- Stephen K. Jerbic, "Fibonomial Coefficients A Few Summation Properties," Master's Thesis, San Jose State College, San Jose, Calif., 1968.

* * * * *