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1. INTRODUCTION 

One of the most famous of all geometric figures is the Golden Rectangle, 
which has the ratio of length to width equal to the Golden Section, 

<t>= (l + V 5 ) / 2 . 

The proportions of the Golden Rectangle appear consistently throughout c lass i -
cal Greek ar t and architecture. As the German psychologists Fechner and 
Wundt have shown in a series of psychological experiments, most people do 
unconsciously favor "golden dimensions" when selecting pictures, cards, mi r -
rors , wrapped parcels, and other rectangular objects. For some reason not 
fully known by either art ists or psychologists, the Golden Rectangle holds great 
aesthetic appeal. Surprisingly enough, the best integral lengths to use for 
sides of an approximation to the Golden Rectangle are adjacent members of 
the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, ••• , and we find 3 x 5 and 5 x 8 
filing cards, for instance. 

Suppose that, instead of a Golden Rectangle, we study a golden section 
triangle. If the ratio of a side to the base is 

<£ = a + V5)/2 , 

then we will call the triangle a Golden Triangle. (See [2] , [3] . ) 
Now, consider the isosceles triangle with a vertex angle of 36°. On bi-

secting the base angle of 72°, two isosceles triangles are formed, and ABDC 
is similar to A ABC as indicated in the figure: 
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0 y x 

Since AABC-ABDC, 

AB 
BD 

BC 
DC ' 

or, 

so that 

I = x 

x y - x 

j r - yx - xd = 0 

Dividing through by x2 / 0, 

l ! _ I > i = 

The quadratic equation gives 

f = (1 + V5)/2 = 0 

as the positive root, so that A ABC is a Golden Triangle. Notice also, that, 
using the common altitude from B, the ratio of the area of AABC to AADB 
i s <f>* 
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Since the central angle of a regular decagon is 36°, AABC above shows 
that the ratio of the radius y to the side x of an inscribed decagon is 

4> = (1 + \/5)/2 . 

Also, in a regular pentagon, the angle at a vertex between two adjacent diagon-
als is 36°. By reference to the figure above,, the ratio of a diagonal to a side 
of a regular pentagon is also <j>. 

2. A TRIGONOMETRIC PROPERTY OF THE ISOSCELES GOLDEN TRIANGLE 

The Golden Triangle with vertex angle 36° can be used for a surprising 
trigonometric application. Few of the trigonometric functions of an acute angle 
have values which can be expressed exactly,, Usually, a method of approxi-
mation is used; mostvalues in trigonometric tables cannot be expressed exactly 
as terminating decimals, repeating decimals, or even square roots, since they 
are approximations to transcendental numbers, which are numbers so i r r a -
tional that they are not the root of any polynomial over the integers. 

The smallest integral number of degrees for which the trigonometric 
functions of the angle can be expressed exactly is three degrees. . Then, all 
multiples of 3° can also be expressed exactly by repeatedly using formulas 
such as sin(A + B). Strangely enough, the Golden Triangle can be used to de-
rive the value of sin 3°, 

In our Golden Triangle, the ratio of the side to the base was 

y/x = (1 + V5)/2 . 

Suppose we let AB = y = 1. Then 

1/x = (l + V5) /2 ' , 

or, 

x = (\/5 - l ) /2 . 

Redrawing the figure and bisecting the 36° angle, 
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we form right triangle AYC with YC = x/2. Then, 

sin 18 ° = I£ = £ V5 - 1 = J_ 
AC 2 2 * 

Since sin2A + cos2A = 1, 

cos 18 o = y/lO + 2V5 = \A/5<ft 

Since sin (A - B) = sin A cos B - sin B cos A, 

sin 15° = sin (45°- 30°) = V l . Y l _ I . YI V6 - V2 
2 2 2 2 

Similarly, using cos (A - B) = cos A cos B + sin A sin B, 

cos 15 o _ \ / 6 + \ / 2 
4 

Again using the formula for sin (A - B), 

sin 3° o s in(18°-i5°) = ( ^ i ^ ^ p l ) . ^ ^ j ^ J ^ E \ 

= ^|"(V5 - D(V6 + V2) - 2(V§ - l)(/5 + V5 ) J 

as given by Ransom in [ l ] . 
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3. GOLDEN RECTANGLE AND GOLDEN TRIANGLE THEOREMS 

77 

While a common way to describe me Golden Rectangle is to give the ratio 
of length to width as 

0 = (1 + y/E)/2 , 

this ratio is a consequence of the geometric properties of the Golden Rectangle 
which are discussed in this section. 

Theorem. Given that the ratio of length to width of a rectangle is k > 1. 
A square with side equal to the width, canbe removed to leave a rectangle sim-
ilar to the original rectangle if and only if k = (1 + \/E)/2 . 

Proof. Let the square PCDR be removed from rectangle ABCD, 
leaving rectangle BPRA. 

c 

w 

n 

p 

w / - w | 

w 

If rectangles ABCD and BPRA have the same ratio of length to width, then 

k = w = 1 
/ - w w " 

Cross-multiplying and dividing by w2 ^ 0 gives a quadratic equation in — 
which has 

w 

( l + V 5 ) / 2 

as its positive root. If 
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1 = (1 + V 5 ) / 2 = <t>, 
W 

[Feb. 

then 

w 
w i.« i 

w 
0 - 1 = 0 

so that both rectangles have the same ratio of length to width. 
Theorem. Given that the ratio of length to width of a rectangle is k > 1. 

A rectangle similar to the first can be removed to leave a rectangle such that 
the ratio of the areas of the original rectangle and the rectangle remaining is 
k, if and only if 

k = (1 + \ / 5 ) / 2 . 

Further, the rectangle remaining is a square* 
Proof, Remove rectangle BPRA from rectangle ABCD as in the 

figure: 

II / - * JC I 

w 

Then 

area ABCD 
area PCDR 

fw 
w i [_y 

But, 
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'w = 1 - k 
wTT^x) w K * 

79 

if and only if 

w 
/- = 1 

or w = / - x or PCDR is a square. Thus, our second theorem is a conse-
quence of the first theorem, 

Analogous theorems hold for Golden Triangles. 
Theorem. Given that the ratio of two sides a and b of a triangle is 

a/b = k > 1. A triangle with side equal to b can be removed to leave a t r i -
angle similar to the first if and only if k = (1 + \ / 5 ) / 2 . 

Proof. Remove AABD from A ABC. 

If A ADC - ABAC9 then 

AC 
BC 

DC 
AC 

or 

b 
a 

a - b 
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Cross multiply, divide by b2 ^ 0, and solve the quadratic in a/b to give 

a/b = ( l + v ^ / 2 . 

as the only positive root. 
If 

a/b = (1 + VB)/2 , 

then 

DC/AC = (a - b)/b = a/b - 1 = (\/5 - l ) /2 

and 

AC/BC = b /a =* 2/(1 + \ /5) = (VJ5 - l ) /2 = DC/AC . 

Since is in both triangles, A ADC ^ ABAC. 
Theorem. Given that the ratio of two sides of a triangle is k > 1. A 

triangle similar to the first can be removed to leave a triangle such that the 
ratio of the areas of the original triangle and the triangle remaining is k, if 
and only if k = (1 + y/Z)/2a 

Proof. Let AADC - ABAC, such that BC/AC = AC/DC = k. 

If the ratio of areas of the original triangle and the one remaining is k, 
since there is a common altitude from A, 
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ir = area ABAC = (BC)(h/2) BC/AC _ k 
areaABDA (BC - DC)(h/2) BC/AC - DC/AC " k - 1/k ' 

Again cross-multiplying and solving the quadratic in k gives k = (1 + \ / 5 ) /2 . 
If 

k = (1 + V 5 ) / 2 , 

then 

BC/AC - AC/DC = (1 + \ / 5 ) / 2 , 

and the ratio of areas BC/(BC - DC) becomes (1 + \/5)/2 when divided 
through by AC and then simply substituting the values of BC/AC and DC/AC. 

If 

k = (1 + y/E)/2 = BC/AC , 

and the ratio of areas of ABAC and \ ABDA is also k, then 

. BC/AC k 
K BC/AC - DC/AC k - x 9 

which leads to 

x = k - 1 or DC/AC = (1 + V5)/2 - 1 = 2/(1 + y/E) 

so that 

AC/DC = (1 + V§)/2 

and ABAC is similar to A ADC. 

4. THE GENERAL GOLDEN TRIANGLE 

Unlike the Golden Rectangle9 the Golden Triangle does not have a unique 
shape. Consider a line segment CD of length 
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0 = (1 + \ /5 ) /2 . 

Place points E, G, and F on line ^Off* such that CE = 1, EG = GF = 0 as 
in the diagram. 

Then9 ED = 0 - 1 and 

CE/ED = 1 (0 - 1) = 0 , 

CF/DF = (20+ 1)(0 + 1) = 0 3 /0 2 = 0 , 

so that E and F divide segment CD internally and externally in the ratio 0. 
Then the circle with center G is the circle of ApoILonius for CI) with ratio 
0. Incidentally, the circle through C, D, and H is orthogonal to circle with 
center G and passing through H, and HG is tangent to the circle through 
C, D, and H. 

Let H be any point on the circle of Apollonius. Then CH/HD = 0 , 
CG/HG = 0 , and ACHG - AHDG. The area of ACHG is 

h(l + 0 ) / 2 = h0 2 /2 , 

and when AHDG is removed* the area of the remaining ACHD is h.0% so 
that the areas have ratio 0 . Then, ACHG is a Golden Triangle, and there 
are an infinite number of Golden Triangles because H can take an infinite num-
ber of positions on circle G. 
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If we choose H so that CH = <f> + 1, then we have the isosceles 36-72-
72 Golden Triangle of decagon fame. If we erect a perpendicular at D and 
let H be the intersection with the circle of ApoUonius* then we have a right 
golden triangle by applying the Pythagorean theorem and its converse. In our 
right golden triangle ACHG, CH = $ W s HG = <j>9 and CG = $2. The two 
smaller right triangles formed by the altitude to CG are each similar to 
ACHG, so that all three triangles are golden. The areas of AHDG, ACDH9 

and ACHG form the geometric progressions, 

vW/29 (V?/2)$, (V$/2)tf* . 

Before going on9 notice that the right golden triangle ACHG provides an 
unusual and surprising configuration. While two pairs of sides and all three 
pairs of angles of ACHG and ACDH are congruent, yet ACHG is not con-
gruent to ACDH! Similarly for ACDH and AHDG. (See Holt [4] .) 

(e- — • 4 + i - _ - _ — ™ _ ^ 

5. THE GOLDEN CUBOID 

H. E. Huntley [5] has described a Golden Cuboid (rectangular parallele-
piped) with lengths of edges a, b , and c, such that 

a : b : c = (/> : 1 : (̂ >" 

The ratios of the areas of the faces are 

< f r : l:<f> 
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and four of the six faces of the cuboid are Golden Rectangles. 
If two cuboids of dimension 

0 " 1 X 1 X 0""1 

are removed from the Golden Cuboid, the remaining cuboid is similar to the 
original and is also a golden cuboid, 

If a cuboid similar to the original is removed and has sides b, c, and 
d, then 

b : c : d = <f> 

so that 

c = d<f), b = d$9 a = d<}? . 

The volume of the or ig ina l i s abc = $6d3, and the volume r emoved i s bed = 
<£?d3. The r e m a i n i n g volume i s $ > 6 - $ 3 ) d 3 . The r a t i o of the volume of the 
o r ig ina l to the volume of the r e m a i n i n g cuboid i s 

<^6d3
 = <fr3

 = 2 + V 5 =_ 3 + V 5 = , 2 

(4>6-<£3)d3 < £ 3 - l 1 + V 5 4 
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6. LUCAS GOLDEN-TYPE RECTANGLES 
85 

Now, in a Golden Rectangle, if one square with side equal to the width is 

removed, the resulting rectangle is similar to the original. Suppose that we 

have a rectangle in which when k squares equal to the width are removed, a 

rectangle similar to the original is formed, as discussed by J . A. Raab [ 6 ] . 

In the figure below, the ratio of length to width in the original rectangle and in 

the similar one formed after removing k squares is y : 1 = 1 :x which gives 

x = l / y . Since each square has side 1, 

y - x = y - 1/y = k, 

ors 

y 2 ~ k y - l = 0 . 

-H 

Let us consider only Lucas golden-type rectangles. That is , let k = L 
st where Lrt , is the (2m+l) Lucas number defined by 2m+l ' 

2m+l' 

L = 2, L = 15 L = L + L 0 0 1 n n-1 n-2 

A known identity is 

(^•N*;- k ^ k . 

where a and /3 are the roots o f x - x - 1 = 0 
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In our problem, if 

k = L 2m + 1 ' 

then 

becomes 

so that 

or 

but 

y2 - ky - 1 = 0 

y 2 " - L 2 m + 1 y - l = 0 

2m+l 
y = a 

a 2m+l 
y = P 

» 2m+l 
y = a • 

is the only positive root. Then 

, / 2m+l n2m+l 
x = l / a = -/3 

On the other hand, suppose we insist that to a given rectangle we add one 
similar to it such that the result is k squares long;. Illustrated for k = 3, 
the equal ratios of length to width in the similar rectangles gives 

- = ""T""^ or ky - y = 1 or y - ky + 1 = 0. 
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k - y ->j 

y 

2m 2ni 2m 
Now, let k = L ; then y =a o r y = fS . H e r e , of c o u r s e , y =/3 , 

zm 
so that 

n 2 m 2m 
k ~ y = L 0 - j3 = « 

Both of these c a s e s a r e 9 of c o u r s e , in the plane; the r e a d e r is invited to 

extend these ideas into the thi rd dimension. 

7e GENERALIZED GOLDEN-TYPE CUBOIDS 

Let the d imensions of a cuboid be a : b : c = k and remove a cuboid 

s i m i l a r to the f i r s t with dimensions b : c : d = ke Then 

2 3 
c = dk, b = dk , a = dk 

The volume of the or iginal is 

abc = k d , 

the volume removed is 

bed = k 3 d 3 

and the remaining volume is 

( k 6 - k
3 ) d 3 . 
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The ratio of the original volume to that remaining is 

k d k 

Now, let this ratio equal 

( k 6 - k V k 3 - i 

k 2 / L Q = k 2 / 2 

which leads to 

0 = k3 - 2k - 1 = (k + l)(k2 - k - 1) 

with roots 

and having 

k = - 1 , (1 ± Vij/2 

k = (1 + VS)/2 

as its only positive root. 
Now consider ahypercuboidin ahyperspace of 6 dimensions, with dimen-

sions a : b : c : d : e : f = k. Remove a hypercuboid of dimensions 

b : c : d : e : f : g = k , 

and the ratio of the original volume to the volume remaining is 

U ^ S 61 2 1 1 6 

abcdef _ g k _ k 
abcdef - bcdefg ~ 6/T 21 . 15 " . 6 ., g (k - k ) k - 1 

since 

2 3 4 5 6 
f = kg, e = k g, d = k g, e = k g, b = k g, a = k g 
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2 Now set this ratio equal to k /L or, 

o 

I 6 I 3 

k k 
k 6 - l 

which leads to 

with roots 

k
6 _ 4k 3 - 1 = 0 

2 2 

2 where a> and a> are cube roots of unity. Then 

k = a = (1 + VE)/2 

is the only positive real root. 
Suppose we have a cuboid in a hyperspace of 4m + 2 dimensions. Let 

this have edges 

V V V " • • a4m+2 ' 

and cut off a cuboid similar to it so that 

b- = a = a : a • • • • : a = a : a : a : « » » : a : a 
1 2 3 4m+2 2 3 4 4m+2 4m+3 

This implies that the dimensions are related by 

. 4m+3-n a = k a . ^ 0 
n 4m+3 

for n = 1,2, •• • ,4m + 3. The volume of the original cuboid is nowa a a • • • 
a^ , « while the volume of the cuboid cut off is a a • • »a, SLA , n. The r e -4m+2 2 3 4m+2 4m+3 
maining cuboid has volume equal to the difference of these, making the ratio of 
the original volume to that remaining 
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a i a
2 V a 4 m + 2 _ a i k 4 m + 2 

a 2 a 3 ' ' ' a4m+2( a l " a4mrH3) V a4m+3 k 4 m + 2 - 1 

Now let us let this volume ratio equal to 

k 2 m + 1 / L 9 + 1 , 2m+l ' 

st where L2 + 1 is the (2m+l) Lucas number, yielding 

k 4 m + 2 - L9 + 1 k 2 m + 1 - 1 = 0 
2m+l 

whose only positive root is 

a = (l + \ / 5 )/2 . 

2 The proof is very neat* Since a(3 = -1 for a and /3 the roots of x - x - 1 
= 0 and since L = a +Bn

i we can write 
n ^ ' 

, = a 2 m + l 2m+l + f l 2m+l _ a4m+2 = a 2 m + l L _a4m+2 
* p ' 2m+l 

and rearrange the terms above to give 

fe4m+2 " L 2 m + l k 2 m + 1 " 1 = (k 4 m + 2 - a 4 m + 2 ) " L 2 m + 1 ( k 2 m + 1 - « 2 m + 1 ) 

= ( k 2 m + 1 - a 2 m + 1 ) ( k 2 m + 1
 + « 2 m + 1 - L 2 m + 1 ) 

- 2m+l 2m+l w l 2m+l 0 2m+l x = (k - a )(k - 0 ) = 0 . 

st Thus9 k-€t(js)., jSc*)., where a>. are the (2m+l) roots of unity, so that 

k = a = (l + \ /5 ) /2 

is the only positive real root. 
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Now, let us return to the volumes of the cuboids in the hyperspace of 
4m + 2 dimensions. Let us set a = a. . Then, since k = a , the volume 
of the original cuboid is 

V l " a l a 2 9 " a 4 m + 2 ~ a « « « • • • « 

and the volume of the cuboid removed is 

17 - o o o « - 4m+2 1 2 3 ^4m+l 
V0 - a 0 a 0 •«• aA , n a , , 0 = a a a a * • • a 

2 2 3 4m+2 4m+3 

making the volume of the cuboid remaining 

XT 4m+2 _T4m+l , 4m+2 1V 
V l " 2 = a * * 

where T is the n triangular number. But, 

4m+2 - T ^,2m+l 
"" X = L 2 m + I a 

so that the remaining cuboid is made up of L . - square cuboids with total 
volume 

4m+2 1 2 3 4m+l , , 2m+l, 
a a a a ••• a (L2m+1 * ' 

Thus we have generalized the Golden Cuboid of Huntley [5] and also the golden-
type rectangle of Raab [ 6 ] . 
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