# ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by
A. P. HIL L MAN

University of New Mexico, Albuquerque, N. Mexico
Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, 87106. Each problem or solution should be submitted in legible form, preferably typed in double spacing, on a separate sheet or sheets in the format used below. Solutions should be received within three months of the publication date.

Contributors (in the United Stated) who desire acknowledgement of receipt of. their contributions are asked to enclose self-addressed stamped postcards.

B-154 Proposed by S. H. L. Kung, Jacksonville University, Jacksonville, Florida
What is special about the following "magic" square?
$\left[\begin{array}{rrrrr}11 & 2 & 14 & 19 & 21 \\ 8 & 13 & 3 & 22 & 1 \\ 20 & 17 & 15 & 6 & 9 \\ 7 & 24 & 18 & 10 & 12 \\ 25 & 5 & 23 & 16 & 4\end{array}\right]$

B-155 Composite of Proposals by M. N. S. Swamy, Nova Scotia Technical College,
Halifax, Canada, and Carol Anne Vespe, University of New Mexico, Albuquerque, N. Mex.

Let the $\mathrm{n}^{\text {th }}$ Pell number be defined by $\mathrm{P}_{0}=0, \mathrm{P}_{1}=1$, and $\mathrm{P}_{\mathrm{n}+2}=$ $2 P_{n+1}+P_{n}$. Show that

$$
P_{n+a} P_{n+b}-P_{n+a+b} P_{n}=(-1)^{n} P_{a} P_{b}
$$

B-156 Proposed by Allan Scott, Phoenix, Arizona.
Let $F_{n}$ be the $n^{\text {th }}$ Fibonacci number, $G_{n}=F_{4 n}-2 n$, and $H_{n}$ be the remainder when $G_{n}$ is divided by 10 .
(a) Show that the sequence $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \cdots$ is periodic and find the repeating block.
(b) The last two digits of $\mathrm{G}_{9}$ and $\mathrm{G}_{14}$ give Fibonacci numbers 34 and 89 respectively. Are there any other cases?

## B-157 Proposed by Klaus Günther Recke, University of Gottingen, Germany.

Let $\mathrm{F}_{\mathrm{n}}$ be the $\mathrm{n}^{\text {th }}$ Fibonacci number and $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ any sequence. Show that

$$
\sum_{k=1}^{n}\left(g_{k+2}+g_{k+1}-g_{k}\right) F_{k}=g_{n+2} F_{n}+g_{n+1} F_{n+1}-g_{1}
$$

B-158 Proposèd by Klaus Günther Recke, University of Gottingen, Germany.
Show that

$$
\sum_{k=1}^{n}\left(k F_{k}\right)^{2}=\left[\left(n^{2}+n+2\right) F_{n+2}^{2}-\left(n^{2}+3 n+2\right) F_{n+1}^{2}-\left(n^{2}+3 n+4\right) F_{n}^{2}\right] / 2
$$

B-159 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn.
Let $T_{n}$ be the $n^{\text {th }}$ triangular number $n(n+1) / 2$ and let $\phi(n)$ be the Euler totient. Show that $\phi(n) \mid \phi\left(T_{n}\right)$ for $n=1,2, \ldots$.

## SOLUTIONS

NOTE: The name of M. N. S. Swamy was inadvertently omitted from the lists of solvers of $\mathrm{B}-118, \mathrm{~B}-119$, and $\mathrm{B}-135$.

## A PELL ANALOGUE

B-136 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.
Let $P_{n}$ be the $\mathrm{n}^{\text {th }}$ Pell number defined by $\mathrm{P}_{1}=1, \mathrm{P}_{2}=2$, and $\mathrm{P}_{\mathrm{n}+2}$ $=2 P_{n+1}+P_{n}$. Show that

$$
P_{n+1}^{2}+P_{n}^{2}=P_{2 n+1}
$$

Solution by J. E. Homer, Union Carbide Corporation, Chicago, Ill.
By induction on $k$ it is easily shown that $P_{N}=P_{k+1} P_{N-k}+P_{k} P_{N-k-1}$. Letting $\mathrm{N}=2 \mathrm{n}+1$ and $\mathrm{k}=\mathrm{n}$ the desired result follows.

Also solved by Clyde A. Bridger, Timothy Burns, Herta T. Freitag, J. A. H. Hunter (Canada), John Ivie, D. V. Jaiswal (India), Bruce W. King, Douglas Lind, C. B. A. Peck, A. G. Shannon (Australia), M. N. S. Swamy (Canada), Gregory Wulczyn, Michael Yoder, and the proposer.

## ANOTHER PELL IDENTITY

B-137 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.
Let $P_{n}$ be the $n^{\text {th }}$ Pell number. Show that $P_{2 n+1}+P_{2 n}=2 P_{n+1}^{2}-2 P_{n}^{2}$ $-(-1)^{\mathrm{n}}$.

Solution by Carol Vespe, University of New Mexico, Albuquerque, N. Mex.
Let $\mathrm{r}=1+\sqrt{2}$ and $\mathrm{s}=1-\sqrt{2}$. Both sides of the identity are of the form

$$
c_{1}\left(r^{2}\right)^{n}+c_{2}(r s)^{n}+c_{3}\left(s^{2}\right)^{n}
$$

with constant c's. Hence both sides satisfy a recurrence relation

$$
y_{n+3}=k_{2} y_{n+2}+k_{1} y_{n+1}+k_{0} y_{n}
$$

with constant $k^{\prime} s$. Therefore the identity is proved for all $n$ by the easy verification for $\mathrm{n}=1,2$, and 3 .

Also solved by Clyde A. Bridger, Herta T. Freitag, J. E. Homer, John Ivie, D. V. Jaiswal (India), Bruce W. King, C. B. A. Peck, A. G. Shannon (Australia), M. N. S. Swamy (Canada), Gregory Wulczyn, Michael Yoder, and the proposer.

B-138 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.
Show that for any nonnegative integer k and any integer $\mathrm{n}>1$, there is an $n-b y-n$ matrix with integral entries whose top row is $F_{k+1}, F_{k+2}, \cdots$, $\mathrm{F}_{\mathrm{k}+\mathrm{n}}$ and whose determinant is 1 .

Solution by J. E. Homer, Union Carbide Corporation, Chicago, Ill.
The g.c.d. of $\left(F_{k+1}, F_{k+2}, \cdots, F_{k+n}\right)$ is 1. There exists an $n-b y-n$ matrix (Problem E1911, American Mathematical Monthly, Aug. -Sept., 1966) with integral entries whose top row is $F_{k+1}, F_{k+2}, \cdots, F_{k+n}$ and whose determinant is the g.c.d. of $\left(F_{k+1}, F_{k+2}, \cdots, F_{k+n}\right)$.

Solution for $n \geq 4$ by A. C. Shannon, ACER, Hawthorn, Victoria, Australia.

$$
\left[\begin{array}{cccccccc}
\mathrm{F}_{\mathrm{k}+1} & \mathrm{~F}_{\mathrm{k}+2} & \mathrm{~F}_{\mathrm{k}+3} & \mathrm{~F}_{\mathrm{k}+4} & \cdots & \mathrm{~F}_{\mathrm{k}+\mathrm{n}-2} & \mathrm{~F}_{\mathrm{k}+\mathrm{n}-1} & \mathrm{~F}_{\mathrm{k}+\mathrm{n}} \\
\mathrm{~F}_{\mathrm{k}+2} & \mathrm{~F}_{\mathrm{k}+3} & 0 & 0 & \cdots & 0 & 0 & \mathrm{~F}_{\mathrm{k}+\mathrm{n}-1} \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & \mathrm{~F}_{\mathrm{k}+\mathrm{n}-2} \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & \mathrm{~F}_{\mathrm{k}+3} \\
0 & 0 & 0 & 0 & \cdots & 0 & \mathrm{~F}_{\mathrm{k}+3} & \mathrm{~F}_{\mathrm{k}+2} \\
0 & 0 & 0 & 0 & \cdots & 0 & \mathrm{~F}_{\mathrm{k}+2} & \mathrm{~F}_{\mathrm{k}+1}
\end{array}\right]
$$

Also solved by Michael Yoder and the proposer.

B-139 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Show that the sequence $1,1,1,1,4,4,9,9,25,25, \cdots$ defined by $a_{2 n-1}=$ $a_{2 n}=F_{n}^{2}$ is complete even if an $a_{j}$ with $j \leq 6$ is omitted but that the sequence is not complete if an $\mathrm{a}_{\mathrm{j}}$ with $\mathrm{j} \geq 7$ is omitted.

Composite of solutions by C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania, and the proposer.

Let $S_{n}=a_{1}+\ldots+a_{n}$. Then it is easily seen that $S_{2 m}=2 F_{m} F_{m+1}$ and $S_{2 m-1}=F_{2 m}=F_{m+1}^{2}-F_{m-1}^{2}$.
J. L. Brown's criterion (Amer. Math. Monthly, Vol. 68, pp. 557-560) states that a nondecreasing sequence of positive integers $b_{1}, b_{2}, \cdots$ with $b_{1}=$ 1 is complete if and only if $b_{n+1} \leq 1+b_{1}+\ldots+b_{n}$ for $n=1,2, \ldots$.

Thus it suffices to show that

$$
\begin{equation*}
a_{n+1} \leq 1+S_{n}-a_{i} \text { for } 1 \leq i \leq 6 \text { and } n>i \tag{A}
\end{equation*}
$$

and
(B)

$$
a_{n+1}>1+S_{n}-a_{i} \text { for } i>6 \text { and some } n \geq i
$$

There is no loss of generality in letting $i=2 k$. Then (B) follows with $\mathrm{n}=\mathrm{i}=2 \mathrm{k}$ since $\mathrm{k} \geq 4,1-\mathrm{F}_{\mathrm{k}-1}^{2} \leq 1-2^{2}=-3$, and

$$
a_{n+1}=F_{k+1}^{2}>1+F_{k+1}^{2}-F_{k-1}^{2}=1+S_{2 k-1}=1+S_{2 k}-a_{2 k}=1+S_{n}-a_{i}
$$

One easily checks (A) when $n<6$. With $n=2 m-1$ and $m \geq 4$, (A) is clear since $S_{n}-a_{i}$ contains $a_{n+1}=a_{n}$ as a term. With $n=2 m$ and $m \geq$ 3, (A) holds if

$$
a_{n+1}=F_{m+1}^{2} \leq 1+S_{n}-a_{6}=S_{n}-3=2 F_{m} F_{m+1}-3
$$

or if

$$
F_{m+1}\left(2 F_{m}-F_{m+1}\right) \geq 3
$$

or if

$$
F_{m+1}\left(F_{m}-F_{m-1}\right) \geq 3
$$

which is true for $m \geq 3$ 。
B-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Show that $\mathrm{F}_{\mathrm{ab}}>\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$ if a and b are integers greater than 1.
Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa.
$a b>a+b-1$ for this is true for $a, b=2$ and differentiation with respect to $b$ with a fixed shows that the l.h.s. increases faster than the r.h.s.
in $b$ (and, by symmetry, in a). Then from

$$
F_{m} F_{n}+F_{m-1} F_{n-1}=F_{m+n-1}
$$

(see Fibonacci Quarterly, Vol. 1, No. 1, p. 66),

$$
F_{a b}>F_{a+b-1}=F_{a} F_{b}+F_{a-1} F_{b-1}>F_{a} F_{b}
$$

Also solved by J. E. Homer, D. V. Jaiswal (India), A. C. Shannon (Australia),
M. N. S. Swamy (Canada), Michael Yoder, and the proposer.

B-141 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tėnn.

Show that no Fibonacci number $F_{n}$ nor Lucas number $L_{n}$ is an even perfect number.

Solution by the proposer.
Recall that an even perfect number greater than 6 must leave a remainder of 1 upon division by 9 and must be a multiple of 4 . An even perfect number greater than 28 must be a multiple of 16 .

If $\mathrm{F}_{\mathrm{n}} \equiv 1(\bmod 9)$, then $\mathrm{n} \equiv 1,2,10,18$, or $23(\bmod 24)$; if $16 \mathrm{~F}_{\mathrm{n}}$ then $\mathrm{n} \equiv 0(\bmod 12)$. These two sets have no common elements.

If $\mathrm{L}_{\mathrm{n}}=1(\bmod 9)$, then $\mathrm{n} \equiv 1$ or $11(\bmod 24)$. If $4 \mid \mathrm{L}_{\mathrm{n}}$ then $\mathrm{n} \equiv 3$ (mod 6). Again we have an empty intersection.

Problem H-23 asked if there were any triangular Fibonacci numbers beyond 55. If the answer to that question is "no" then the Fibonacci half of the above is immediate.

