1. Prove that

$$
L_{2 n}=L_{n}^{2}+2(-1)^{n+1}
$$

2. Using the Binet formulas, find the value of:

$$
L_{n} F_{n-1}-F_{n} L_{n-1}
$$

3. $F_{3 n}=F_{n}()$. Determine the expression for the cofactor of F_{n}.
4. $F_{5 n}=F_{n}()$. Determine the expression for the cofactor of F_{n}.
5. $L_{3 n}=L_{n}()$. Find the expression for the cofactor of L_{n}.
6. $L_{5 n}=L_{n}()$. Find the expression for the cofactor of L_{n}.
7. For the Fibonacci relation with $\mathrm{T}_{1}=3, \mathrm{~T}_{2}=7$, find the expression for T_{n} in terms of powers of r and s.
8. Using the binomial expansion, find an expression for F_{n} in terms of powers of 5 and binomial coefficients.
9. Do likewise for L_{n}.
10. Assuming the relation

$$
L_{n}+L_{n+2}=5 F_{n+1}
$$

determine an equivalent single Fibonacci number for $F_{n}^{2}+F_{n+1}^{2}$ using the Binet formula.
[Continued on p. 106.]

ERRATA FOR

/ LMERA MLGEBPA CONSTRUCTED FROM FIBONACA SEOUENCES
J. W. GOOT HERTS

Lockheed Missiles \& Space Company, Sunnyvale, Calif.
Please make the following changes in the above-entitled article, appearing in Vol. 6, No. 5, November 1968:

On page 36 , change the eighth line from the end to read:
Definition 1.5. For $U, V \in \mathscr{O}, \quad U V=\left(u_{0} v_{0}+u_{1} v_{1}, u_{0} v_{1}+u_{1} v_{0}+u_{1} v_{1}\right)$.
Equation (3) on p. 38 should read:
$a u_{n}+b u_{m}=0$
$a u_{n+1}+b u_{m+1}=0$.
On p. 42, 11 lines from the end, change the "F" to a script \mathfrak{F}.
On p. 49, in the equation preceding Eq. (10), change α_{i} to ω_{i}.

