PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

H. H. FERNS
Victoria, B.C., Canada

Let $U_{X_{i}}$ denote a Fibonacci or a Lucas number and consider the product

We are interested in finding a general method by which this product may be "expanded," i.e., expressed as a linear function of Fibonacci or Lucas numbers.

Beginning with the case in which $n=2$ we find that there are four types of such products. Using Binet's formulas it is easily verified that these may be expressed as follows:

$$
\begin{aligned}
& F_{x_{1}} L_{x_{2}}=F_{x_{1}+x_{2}}+(-1)^{x_{2}} F_{x_{1}-x_{2}} \\
& L_{x_{1}} F_{x_{2}}=F_{x_{1}+x_{2}}-(-1)^{x_{2}} F_{x_{1}-x_{2}} \\
& L_{x_{1}} L_{x_{2}}=L_{x_{1}+x_{2}}+(-1)^{x_{2}} L_{x_{1}-x_{2}} \\
& F_{x_{1}} F_{x_{2}}=\frac{1}{5}\left[L_{x_{1}+x_{2}}-(-1)^{x_{2}} L_{x_{1}-x_{2}}\right]
\end{aligned}
$$

From these four identities we make the following observations.
This "multiplication" is not commutative.
The product of a mixed pair (i. e., one factor is a Fibonacci number and the other is a Lucas number) is a linear function of Fibonacci numbers. The product of a Fibonacici and Lucas number is a function of Lucas numbers.

The coefficient of the second term is $(-1)^{X_{2}}$ or $-(-1)^{X_{2}}$ according as X_{2} comes from the subscript of a Lucas or a Fibonacci number.

The factor $1 / 5$ occurs when both numbers in the product are Fibonacci.

For convenience we denote -1 by ϵ. Now consider $\epsilon^{x_{i}}$ as playing a dual role. As a coefficient of L_{x} or F_{x} it has the value $(-1)^{x_{i}}$. As an operator applied to these numbers it reduces their subscripts by $2 x_{i}$. With this in mind, we may write

$$
\begin{aligned}
& F_{x_{1}} L_{x_{2}}=\left(1+\epsilon^{x_{2}}\right) F_{x_{1}+x_{2}}=F_{x_{1}+x_{2}}+(-1)^{x_{2}} F_{x_{1}-x_{2}} \\
& L_{x_{1}} F_{x_{2}}=\left(1-\epsilon^{x_{2}}\right) F_{x_{1}+x_{2}}=F_{x_{1}+x_{2}}-(-1)^{x_{2}} F_{x_{1}-x_{2}} \\
& L_{x_{1}} L_{x_{2}}=\left(1+\epsilon^{x_{2}}\right) L_{x_{1}+x_{2}}=L_{x_{1}+x_{2}}+(-1)^{x_{2}} L_{x_{1}-x_{2}} \\
& F_{x_{1}} F_{x_{2}}=\left(1-\epsilon^{x_{2}}\right) L_{x_{1}+x_{2}}=\frac{1}{5}\left[L_{x_{1}+x_{2}}-(-1)^{x_{2}} L_{x_{1}-x_{2}}\right]
\end{aligned}
$$

We turn now to products containing three factors such as $L_{x_{1}} L_{X_{2}} F_{x_{3}}{ }^{\circ}$ For the moment we shall understand that $L_{x_{1}} L_{x_{2}} F_{x_{3}}$ means $\left(L_{\mathrm{x}_{1}} L_{x_{2}}\right)$ $\mathrm{F}_{\mathrm{x}_{3}}$. Then, making use of the above results, we have

$$
\begin{aligned}
\left(L_{x_{1}} L_{x_{2}}\right) F_{x_{3}}= & {\left[L_{x_{1}+x_{2}}+(-1)^{x_{2}} L_{x_{1}-x_{2}}\right] F_{x_{3}} } \\
= & L_{x_{1}+x_{2}} F_{x_{3}}+(-1)^{x_{2}} L_{x_{1}-x_{2}} F_{x_{3}} \\
= & F_{x_{1}+x_{2}+x_{3}}-(-1)^{x_{3}} F_{x_{1}+x_{2}-x_{3}}+(-1)^{x_{2}} \times \\
& \times\left[F_{x_{1}-x_{2}+x_{3}}-(-1)^{x_{3}} L_{x_{1}-x_{2}-x_{3}}\right] \\
= & F_{x_{1}+x_{2}+x_{3}}-(-1)^{x_{3}} F_{x_{1}+x_{2}-x_{3}}+(-1)^{x_{2}} \times \\
& \times F_{x_{1}-x_{2}+x_{3}}-(-1)^{x_{2}+x_{3}} L_{x_{1}-x_{2}-x_{3}}
\end{aligned}
$$

Using $\epsilon^{X_{i}}$ we arrive at the same result.

$$
\begin{aligned}
L_{x_{1}} L_{x_{2}} F_{x_{3}} & =\left(1+\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right) F_{x_{1}+x_{2}+x_{3}} \\
& =\left(1+\epsilon^{x_{2}}\right) F_{x_{1}+x_{2}+x_{3}}-(-1)^{x_{3}} F_{x_{1}+x_{2}-x_{3}} \\
& =F_{x_{1}+x_{2}+x_{3}}-(-1)^{x_{3}} F_{x_{1}+x_{2}-x_{3}}+(-1)^{x_{2}} F_{x_{1}-x_{2}+x_{3}}-(-1)^{x_{2}+x_{3}} \times \\
& \times F_{x_{1}-x_{2}-x_{3}}
\end{aligned}
$$

Since

$$
\left(1+\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right)=1+\epsilon^{x_{2}}-\epsilon^{x_{3}}-\epsilon^{x_{2}+x_{3}},
$$

we could proceed as follows:

$$
\begin{aligned}
L_{x_{1}} L_{x_{2}} F_{x_{3}}= & \left(1+\epsilon^{x_{2}}-\epsilon^{x_{3}}-\epsilon^{x_{2}+x_{3}}\right) F_{x_{1}+x_{2}+x_{3}} \\
= & F_{x_{1}+x_{2}+x_{3}}+(-1)^{x_{2}} F_{x_{1}-x_{2}+x_{3}}-(-1)^{x_{3}} F_{x_{1}+x_{2}-x_{3}}-(-1)^{x_{2}+x_{3}} \times \\
& \times F_{x_{1}-x_{2}-x_{3}}
\end{aligned}
$$

We leave it as an exercise to show that $L_{X_{1}}\left(L_{x_{2}} F_{x_{3}}\right)$ when expanded by any of these methods leads to the same result.

There are eight types of products, each consisting of three factors. We list them below.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}_{1}} L_{\mathrm{x}_{2}} L_{\mathrm{x}_{3}}=\left(1+\epsilon^{x_{2}}\right)\left(1+\epsilon^{x_{3}}\right) \mathrm{F}_{\mathrm{x}_{1}+\mathrm{x}_{2}+x_{3}} \\
& L_{\mathrm{x}_{1}} F_{x_{2}} L_{x_{3}}=\left(1-\epsilon^{x_{2}}\right)\left(1+\epsilon^{x_{3}}\right) F_{x_{1}+x_{2}+x_{3}} \\
& L_{x_{1}} L_{x_{2}} F_{x_{3}}=\left(1+\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right) F_{x_{1}+x_{2}+x_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{x_{1}} F_{x_{2}} F_{x_{3}}=\frac{1}{5}\left(1-\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right) F_{x_{1}+x_{2}+x_{3}} \\
& L_{x_{1}} F_{x_{2}} F_{x_{3}}=\frac{1}{5}\left(1-\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right) L_{x_{1}+x_{2}+x_{3}} \\
& F_{x_{1}} L_{x_{2}} F_{x_{3}}=\frac{1}{5}\left(1+\epsilon^{x_{2}}\right)\left(1-\epsilon^{x_{3}}\right) L_{x_{1}+x_{2}+x_{3}} \\
& F_{x_{1}} F_{x_{2}} L_{x_{3}}=\frac{1}{5}\left(1-\epsilon^{x_{2}}\right)\left(1+\epsilon^{x_{3}}\right) L_{x_{1}+x_{2}+x_{3}} \\
& L_{x_{1}} L_{x_{2}} L_{x_{3}}=\left(1+\epsilon^{x_{2}}\right)\left(1+\epsilon^{x_{3}}\right) L_{x_{1}+x_{2}+x_{3}} .
\end{aligned}
$$

The preceding results are the bases for the following conjecture.
Let $U_{X_{i}}$ represent a Fibonacci or a Lucas number. Let p be the number of Fibonacci numbers in a product of both Fibonacci and Lucas numbers. Let

$$
\overline{\mathrm{U}}_{x_{1}+x_{2}+\cdots+x_{n}}
$$

denote a Fibonacci or a Lucas number according as p is odd or even. As a coefficient $\epsilon^{X_{i}}$ has the numerical value $(-1)^{X_{i}}$ but as an operator applied to

$$
\overline{\mathrm{U}}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}}
$$

it reduces the subscript of the latter by ix_{i} 。
Use

$$
\left(1-\epsilon^{x_{i}}\right) \quad \text { or } \quad\left(1+\epsilon^{x_{i}}\right)
$$

according as x_{i} is the subscript of a Fibonacci or a Lucas number in the product. Then

$$
\prod_{i=1}^{u} U_{x_{i}}=\frac{1}{\left[\frac{p}{2}\right]}\left(1 \pm \epsilon^{x_{2}}\right)\left(1 \pm \epsilon^{x_{3}}\right) \cdots\left(1 \pm \epsilon^{x_{n}}\right) \bar{U}_{x_{1}+x_{2}+\cdots+x_{n}}
$$

The proof of this conjecture is given at the end of this article. The following example will illustrate

$$
\begin{aligned}
F_{15} F_{12} L_{10} F_{8} & =\frac{1}{5}\left(1-\epsilon^{12}\right)\left(1+\epsilon^{10}\right)\left(1-\epsilon^{8}\right) F_{45} \\
& =\frac{1}{5}\left(1-\epsilon^{12}\right)\left(1+\epsilon^{10}\right)\left(F_{45}-F_{29}\right) \\
& =\frac{1}{5}\left(1-\epsilon^{12}\right)\left(F_{45}-F_{29}+F_{25}-F_{9}\right) \\
& =\frac{1}{5}\left(F_{45}-F_{29}+F_{25}-F_{9}-F_{21}+F_{5}-F_{1}+F_{-15}\right) \\
& =\frac{1}{5}\left(F_{45}-F_{29}+F_{25}-F_{21}+F_{15}-F_{9}+F_{5}-F_{1}\right)
\end{aligned}
$$

The above rule also applies if the product consists entirely of Fibonacci or of Lucas numbers each with the same subscript. For example,

$$
\begin{aligned}
L_{x}^{5} & =\left(1+\epsilon^{x}\right)^{4} L_{5 x} \\
& =\left(1+4 \epsilon^{x}+6 \epsilon^{2 x}+4 \epsilon^{3 x}+\epsilon^{4 x^{x}}\right) L_{5 x} \\
& =L_{5 x}+4(-1)^{x^{x}} L_{3 x}+6(-1)^{2 x_{L_{x}}}+4(-1)^{3 x_{L}} L_{-x}+(-1)^{4 x_{L}} L_{-3 x} \\
& =L_{5 x}+\left[4(-1)^{x}+(-1)^{x}\right] L_{3 x}+\left[6(-1)^{2 x}+4(-1)^{2 x}\right] L_{x} \\
& =L_{5 x}+5(-1)^{x} L_{3 x}+10 L_{x}
\end{aligned}
$$

More generally, if n is an odd integer we have

$$
\begin{aligned}
L_{x}^{n}= & \left(1+\epsilon^{x}\right)^{n-1} L_{n x} \\
= & L_{n x}+\binom{n-1}{1} \epsilon^{x_{L}} L_{(n-2) x}+\binom{n-1}{2} \epsilon^{2 x_{L}}{ }_{(n-4) x}+\cdots \\
& +\binom{n-1}{n-2} \epsilon^{(n-2) x_{L}} L_{-(n-4) x}+\binom{n-1}{n-1} \epsilon^{(n-1) x_{L}} L_{-(n-2) x}
\end{aligned}
$$

Since

$$
\mathrm{L}_{-\mathrm{k}}=(-1)^{\mathrm{k}_{\mathrm{L}}}{ }_{\mathrm{k}}
$$

we get

$$
\begin{aligned}
& L_{x}^{n}=L_{n x}+\left[\binom{n-1}{1}+\binom{n-1}{n-1}\right] \epsilon^{x_{L}} L_{(n-2) x}+\left[\binom{n-1}{2}+\binom{n-1}{n-2}\right] \epsilon^{2 x_{L}}{ }_{(n-4) x} \\
& +\cdots+\left[\left(\begin{array}{l}
n-1 \\
\left.\left.\frac{n-1}{2}\right)+\binom{n-1}{2}\right] \epsilon^{\left(\frac{n-1}{2}\right)} L_{x} ~ . ~ . ~
\end{array}\right.\right.
\end{aligned}
$$

Making use of the identity

$$
\binom{n}{m}+\binom{n}{n-m}=\binom{n+1}{m}
$$

the last equation may be written

$$
\begin{gathered}
L_{x}^{n}=L_{n x}+\binom{n}{1} \epsilon^{x_{L_{(n-2) x}}+\binom{n}{2} \epsilon^{2 x_{L}} L_{(n-4) x}+\cdots+\left(\frac{n-1}{2}\right) \epsilon^{\left(\frac{n-1}{2}\right) x} L_{x}} \begin{array}{c}
\frac{n-1}{2} \\
L_{x}^{n}=\sum_{i=0}^{n}(-1)^{x i}\binom{n}{i} L_{(n-2 i) x} \quad n=1,3,5, \cdots
\end{array} .
\end{gathered}
$$

Similarly, we get the following:
$L_{x}^{n}=\sum_{i=0}^{\frac{n}{2}-1}\left[(-1)^{x_{i}}\binom{n}{i} L_{(n-2 i) x}\right]+2(-1)^{\frac{n}{2} x}\binom{n-1}{\frac{n}{2}} \quad(n$, even $)$
$F_{x}^{n}=\frac{1}{5^{\frac{n-1}{2}}} \sum_{i=0}^{\frac{n-1}{2}}(-1)^{(x+1) i}\binom{n}{i} F_{(n-2 i) x} \quad \quad(n$, odd $)$
$F_{x}^{n}=\frac{1}{5^{\frac{n}{2}}} \sum_{i=0}^{\frac{n}{2}-1}\left[(-1)^{(x+1) i}\binom{n}{i} L_{(n-2 i) x}\right]+2(-1)^{\frac{n}{2}(x+1)}\binom{n-1}{\frac{n}{2}} \quad(n$, even $)$

The proof of the rule which has been used to express products of Fibonacci and Lucas numbers as linear functions of those numbers is a proof by induction.

We have seen that it is true for $n=2$ and $n=3$. Assume it is true for all integral values of n up to and including k. Then, if p is even
(1) $\prod_{i=1}^{k} U_{x_{i}}=\frac{1}{{ }_{5}^{\left[\frac{p}{2}\right]}}\left(1 \pm \epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right) L_{x_{1}+x_{2}+\cdots+x_{k}}$.

Multiplying both members of this equation by L_{x+1} we get

$$
\begin{aligned}
\prod_{i=1}^{k} U_{x_{i}} L_{x+1}= & \frac{1}{{ }_{5}\left[\frac{p}{2}\right]}\left(1 \pm \epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right) L_{x_{1}+x_{2}+\cdots+x_{k}} L_{x_{k+1}} \\
= & \frac{1}{{ }_{5}\left[\frac{p}{2}\right]}\left(1 \pm \epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right) \times \\
& \quad \times\left(L_{x_{1}+x_{2}+\cdots+x_{k+1}}+(-1)^{k+1} L_{x_{1}+x_{2}+\cdots+x_{k}-x_{k+1}}\right) \\
= & \frac{1}{\left[\frac{p}{2}\right]}\left(1+\epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right)\left(1+\epsilon^{x_{k+1}}\right) L_{x_{1}+x_{2}+\cdots+x_{k+1}}
\end{aligned}
$$

Next, multiplying both sides of equation (1) by F_{x+1} we get

$$
\begin{aligned}
\prod_{i=1}^{k} U_{x_{i}} F_{x_{k+1}}= & \frac{1}{{ }_{5}\left[\frac{p}{2}\right]}\left(1+\epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right) L_{x_{1}+x_{2}+\cdots+x_{k}} F_{x_{k+1}} \\
= & \frac{1}{5^{\left[\frac{p}{2}\right]}\left(1 \pm \epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right) \times} \\
& \times\left[F_{x_{1}+x_{2}+\cdots+x_{k+1}}-(-1)^{x_{k+1}} F_{\left.x_{1}+x_{2}+\cdots+x_{k}-x_{k+1}\right]}\right] \\
= & \frac{1}{5^{\left[\frac{p}{2}\right]}\left(1 \pm \epsilon^{x_{2}}\right) \cdots\left(1 \pm \epsilon^{x_{k}}\right)\left(1-\epsilon^{x_{k+1}}\right) F_{x_{1}+x_{2}+\cdots+x_{k+1}}}
\end{aligned}
$$

Since both of these results agree with that given by the general rule for $\mathrm{n}=\mathrm{k}+1$ the induction is complete for the case in which

$$
\overline{\mathrm{U}}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}}=\mathrm{L}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}}
$$

We leave the case in which

$$
\bar{U}_{x_{1}+x_{2}+\cdots+x_{n}}=F_{x_{1}+x_{2}+\cdots+x_{n}}
$$

for the reader to prove.
We now consider the reverse problem; that is, the problem of finding a general method of expressing

$$
\mathrm{L}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}} \text { and } \mathrm{F}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}}
$$

as a homogeneous function of products, each of the type,

$$
\mathrm{F}_{\mathrm{x}_{1}} \mathrm{~F}_{\mathrm{x}_{2}} \cdots \mathrm{~F}_{\mathrm{x}_{\mathrm{i}}} \mathrm{~L}_{\mathrm{x}_{\mathrm{i}+1}} \mathrm{~L}_{\mathrm{x}_{\mathrm{i}+2}} \cdots \mathrm{~L}_{\mathrm{x}_{\mathrm{n}}}
$$

For simplicity let S_{i}^{n} denote the sum of all products consisting of i factors which are Fibonacci numbers and $n-i$ which are Lucas numbers. The number of such factors is, of course, $\binom{n}{i}$.

For example,

$$
\begin{aligned}
S_{2}^{4}= & F_{x_{1}} F_{x_{2}} L_{x_{3}} L_{x_{4}}+F_{x_{1}} F_{x_{3}} L_{x_{2}} L_{x_{4}}+F_{x_{1}} F_{x_{4}} L_{x_{2}} L_{x_{3}}+ \\
& +F_{x_{2}} F_{x_{3}} L_{x_{1}} L_{x_{4}}+F_{x_{2}} F_{x_{4}} L_{x_{1}} L_{x_{3}}+F_{x_{3}} F_{x_{4}} L_{x_{1}} L_{x_{2}}
\end{aligned}
$$

For later use we note that

$$
s_{i}^{n} L_{x_{n+1}}+s_{i-1}^{n} F_{x_{n+1}}=s_{i}^{n+1}
$$

This follows from the identity

$$
\binom{n}{i}+\binom{n}{i-1}=\binom{n+1}{i}
$$

For the case $n=2$ we readily prove (using Binet's formulas) that

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x}_{1}+\mathrm{x}_{2}} & =\frac{1}{2}\left(\mathrm{~L}_{\mathrm{x}_{1}} \mathrm{~F}_{\mathrm{x}_{2}}+\mathrm{F}_{\mathrm{x}_{1}} \mathrm{~L}_{\mathrm{x}_{2}}\right) \\
& =\frac{1}{2} S_{1}^{2} \\
\mathrm{~L}_{\mathrm{x}_{1}+\mathrm{x}_{2}} & =\frac{1}{2}\left(\mathrm{~L}_{\mathrm{x}_{1}} \mathrm{~L}_{\mathrm{x}_{2}}+5 \mathrm{~F}_{\mathrm{x}_{1}} \mathrm{~F}_{\mathrm{x}_{2}}\right) \\
& =\frac{1}{2}\left(S_{0}^{2}+5 \mathrm{~S}_{2}^{2}\right)
\end{aligned}
$$

Using these two identities as a basis, we develop the following for $\mathrm{n}=3$

$$
\begin{aligned}
F_{x_{1}+x_{2}+x_{3}} & =F_{\left(x_{1}+x_{2}\right)+x_{3}} \\
& =\frac{1}{2}\left[L_{x_{1}+x_{2}} F_{x_{3}}+F_{x_{1}+x_{2}} L_{x_{3}}\right] \\
& =\frac{1}{2}\left[\frac{1}{2}\left(L_{x_{1}} L_{x_{2}}+5 F_{x_{1}} F_{x_{2}}\right) F_{x_{3}}+\frac{1}{2}\left(L_{x_{1}} F_{x_{2}}+F_{x_{1}} L_{x_{2}}\right) L_{x_{3}}\right] \\
& =\frac{1}{2^{2}}\left[L_{x_{1}} L_{x_{2}} F_{x_{3}}+5 F_{x_{1}} F_{x_{2}} F_{x_{3}}+L_{x_{x_{1}}} F_{x_{2}} L_{x_{3}}+F_{x_{1}} L_{x_{2}} L_{x_{3}}\right] \\
& =\frac{1}{2^{2}}\left[S_{1}^{3}+5 S_{3}^{3}\right] \\
L_{x_{1}+x_{2}+x_{3}} & =\frac{L}{\left(x_{1}+x_{2}\right)+x_{3}} \\
& =\frac{1}{2}\left[L_{x_{1}+x_{2}} L_{x_{3}}+5 F_{x_{1}+x_{2}} F_{x_{3}}\right] \\
& =\frac{1}{2}\left[\frac{1}{2}\left(L_{x_{1}} L_{x_{2}}+5 F_{x_{1}} F_{x_{2}}\right) L_{x_{3}}+\frac{5}{2}\left(L_{x_{1}} F_{x_{2}}+F_{x_{1}} L_{x_{2}}\right) F_{x_{3}}\right] \\
& =\frac{1}{2^{2}}\left[L_{x_{1}} L_{x_{2}} L_{x_{3}}+5 F_{x_{1}} F_{x_{2}} L_{x_{3}}+5 F_{x_{1}} L_{x_{2}} F_{x_{3}}+5 L_{x_{1}} F_{x_{2}} F_{x_{3}}\right] \\
& =\frac{1}{2^{2}}\left[S_{0}^{3}+5 S_{2}^{3}\right] .
\end{aligned}
$$

Proceeding in this manner we derive the following identities for $\mathrm{n}=4$ and $\mathrm{n}=5$:

$$
\begin{aligned}
& F_{x_{1}+x_{2}+x_{3}+x_{4}}=\frac{1}{2^{3}}\left[S_{1}^{4}+5 S_{3}^{4}\right] \\
& F_{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}=\frac{1}{2^{4}}\left[S_{1}^{5}+5 S_{3}^{5}+5^{2} S_{5}^{5}\right] \\
& L_{x_{1}+x_{2}+x_{3}+x_{4}}=\frac{1}{2^{3}}\left[S_{0}^{4}+5 S_{2}^{4}+5^{2} S_{4}^{4}\right]
\end{aligned}
$$

$$
L_{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}=\frac{1}{2^{4}}\left[S_{0}^{5}+5 S_{2}^{5}+5^{2} S_{4}^{5}\right]
$$

From the above results we conjecture the validity of the following identities which we will prove later.
(2) $F_{x_{1}+x_{2}+\cdots+x_{n}}=\frac{1}{2^{n-1}}\left[S_{1}^{n}+5 S_{3}^{n}+5^{2} S_{5}^{n}+\cdots+\left\{\begin{array}{l}\frac{n-2}{2} \\ 5^{n} \\ S_{n-1}^{n} \\ \frac{n-1}{2} \\ 5^{n} \\ S_{n}^{n}\end{array}\right]\right.$ (n, even)
(3) $L_{x_{1}+x_{2}+\cdots+x_{n}}=\frac{1}{2^{n-1}}\left[S_{0}^{n}+5 S_{2}^{n}+5^{2} S_{4}^{n}+\cdots+\left\{\begin{array}{ll}\frac{n}{2} \\ 5^{n} S_{n}^{n} \\ \frac{n-1}{2} & S_{n-1}^{n}\end{array}\right] \quad\right.$ (n, even)

Before proceeding with the proofs of these identities we consider the special case when $x_{1}=x_{2}=\cdots=x_{n}=x$. Forthis case we get the following:
$F_{n x}=\frac{1}{2^{n-1}}\left[\binom{n}{1} F_{x} L_{x}^{n-1}+5\binom{n}{3} F_{x}^{3} L_{x}^{n-3}+\cdots+\left\{\begin{array}{l}\left.\frac{n-2}{5^{\frac{n}{2}}}\binom{n}{n-1} F_{x}^{n-1} L_{x}\right] \\ \frac{n-1}{\frac{2}{2}}\binom{n}{n} F_{x}^{n}\end{array}\right] \quad\right.$ (n,oven)
$L_{n x}=\frac{1}{2^{n-1}}\left[L_{x}^{n}+5\binom{n}{2} F_{x}^{2} L_{x}^{n-2}+\cdots+\left\{\begin{array}{l}\frac{n}{5^{2}}\binom{n}{n} F_{x}^{n} \\ \frac{n-1}{5^{2}}\binom{n}{n-1} F_{x}^{n-1} L_{x}\end{array}\right] \quad\right.$ (n, even)

Note, in particular, if $n=2$ we get two well-known identities

$$
F_{2 x}=F_{X} L_{X}
$$

and

$$
\mathrm{L}_{2 \mathrm{x}}=\frac{1}{2}\left(\mathrm{~L}_{\mathrm{x}}^{2}+5 \mathrm{~F}_{\mathrm{x}}^{2}\right)
$$

We have now to prove the identities (1) and (2). The proof is by induction on n. Both identities are true for $n=2$. We assume they are valid for all integral values of n up to and including $n=k$.

Then
(4) $\mathrm{F}_{\mathrm{X}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{k}}}=\frac{1}{2^{\mathrm{k}-1}}\left[\mathrm{~S}_{1}^{\mathrm{k}}+5 \mathrm{~S}_{3}^{\mathrm{k}}+5^{2} \mathrm{~S}_{5}^{\mathrm{k}}+\cdots+\left\{\begin{array}{l}\frac{\mathrm{k}-2}{2} \mathrm{~S}^{\mathrm{k}} \\ \mathrm{S}_{\mathrm{k}-1}\end{array}\right]\right.$ (k, even)
(5) $L_{x_{1}+x_{2}+\cdots+x_{k}}=\frac{1}{2^{k-1}}\left[S_{0}^{k}+5 S_{2}^{k}+5^{2} S_{4}^{k}+\cdots+\left\{\begin{array}{l}\frac{k}{5^{2}} S_{k}^{k} \\ \left.\frac{k-1}{2} S^{k}\right] \text { (} k \text {, even) }\end{array}\right]\right.$ (k, odd)

Now
(6) $\mathrm{L}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{k}}+\mathrm{x}_{\mathrm{k}+1}} \equiv \mathrm{~L}_{\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{k}}\right)+\mathrm{x}_{\mathrm{k}+1}}$

$$
=\frac{1}{2}\left[L_{x_{1}+x_{2}+\cdots+x_{k}} L_{x_{k+1}}+5 F_{x_{1}+x_{2}+\cdots+x_{k}} F_{x_{k+1}}\right]
$$

Applying (4) and (5) to the right member of (6), we get
(7) $\quad L_{x_{1}+x_{2}+\cdots+x_{k}} L_{x_{k+1}}=\frac{1}{2^{k-1}}\left[S_{0}^{k} L_{x_{k+1}}+5 S_{2}^{k} L_{x_{k+1}}+\cdots\right.$

$$
+\left\{\begin{array}{ll}
5^{\frac{k}{2}} S_{k}^{k} L_{x_{k+1}}
\end{array}\right] \quad \text { (k, even) }
$$

(8)

$$
\begin{aligned}
& \text { PRODUCTS OF FIBONACCI AND LUCAS NUMBERS } \\
& \mathrm{F}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{k}}} \mathrm{~F}_{\mathrm{x}_{\mathrm{k}+1}}=\frac{1}{2^{\mathrm{k}-1}}\left[\mathrm{~S}_{1}^{\mathrm{k}} \mathrm{~F}_{\mathrm{x}_{\mathrm{k}+1}}\right.+5 \mathrm{~S}_{3}^{\mathrm{k}} \mathrm{~F}_{\mathrm{x}_{\mathrm{k}+1}}+\cdots \\
&+\left\{\begin{array}{l}
\left.\frac{\mathrm{k}-2}{2} \mathrm{~S}^{2} \mathrm{~S}_{\mathrm{k}-1}^{\mathrm{k}} \mathrm{~F}_{\mathrm{x}_{\mathrm{k}+1}}\right] \\
\frac{\mathrm{k}-1}{2} \\
\left.5^{\mathrm{k}} \mathrm{~F}_{\mathrm{x}_{\mathrm{k}+1}}\right]
\end{array}\right](\mathrm{k}, \text { even) }
\end{aligned}
$$

Substituting in (6) from (7) and (8) and regrouping we get the following:

$$
\begin{aligned}
L_{x_{1}+x_{2}+\ldots+x_{k+1}}= & S_{0}^{k+1}
\end{aligned}+5\left(S_{2}^{k} L_{x_{k+1}}+S_{1}^{k} F_{x_{k+1}}\right) \quad \begin{array}{ll}
& 5^{2}\left(S_{4}^{k} L_{x_{k+1}}+S_{3}^{k} F_{x_{k+1}}\right)+\cdots \\
& +\left(\begin{array}{l}
5^{\frac{k}{2}\left(S_{k}^{k} L_{x_{k+1}}+S_{k-1}^{k} F_{x_{k+1}}\right)} \\
\frac{k-1}{5^{2}} S_{k} F_{k+1}
\end{array}(k, \text { even) }\right. \\
& (k, \text { odd })
\end{array}
$$

Hence
$L_{x_{1}+x_{2}+\cdots+x_{k+1}}=S_{0}^{k+1}+5 S_{2}^{k+1}+5^{2} S_{4}^{k+1}+\cdots+ \begin{cases}5^{\frac{k}{2}} S_{k}^{k+1} & (k+1, \text { even }) \\ \frac{k-1}{5^{2}} S_{k+1}^{k+1} & (k+1, \text { odd })\end{cases}$
This completes the proof of (3). The proof of (2) is similar.

ERRATA FOR

PSEUDO-FIBONACCI NUMBERS
H. H. Ferns

Victoria, B.C., Canada
Please make the following changes in the above-entitled article appearing in Vol. 6, No. 6:
p. 305: in Eq. (3), $\mathrm{O}_{\mathrm{i}+1}$ should read: $\mathrm{O}_{\mathrm{i}+2}$. On p. 306 , the $6^{\text {th }}$ line from the bottom: $B^{-\mathrm{k}+1}$ should read: $\mathrm{B}^{\mathrm{k}+1}$. On page 310, in Eq. (12), $2 \mathrm{O}_{2 n}$ should read: $2 \lambda \mathrm{O}_{2 \mathrm{n}}$; in Eq. (13), $30_{2 n+1}$ should read: $3 \mathrm{O}_{2 \mathrm{n}+1}$. Equation (17), on p. 312: $(\lambda-2) \mathrm{O}_{2 \mathrm{n}-1}$ should read: $\lambda(\lambda-2) \mathrm{O}_{2 \mathrm{n}-1^{\circ}}$ Equation (18s) on p. 313: 40_{i}^{2} should read: $4 \mathrm{O}_{\mathrm{i}}^{2}$. In line 3 , p. $314,20_{2 n+2}$ should read $2 \mathrm{O}_{2 \mathrm{n}+2}$, and Eq. (20), p. 315: $(\lambda-2) \mathrm{O}_{2 \mathrm{n}}$ should read $\lambda(\lambda-2) \mathrm{O}_{2 \mathrm{n}}$.

