IDENTITIES INVOLVING GENERALIED FIBONACCI NUMBERS

MUTHUL AK SHMI R. IYER
Indian Statistical Institute, Calcutta, India

I. INTRODUCTION

K. Subba Rao [4], and more recently V. C. Harris [1] have obtained some identities involving Fibonacci Numbers F_{n} defined by

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad n \geq 3
$$

Our object in this paper is to obtain similar results for the generalized Fibonacci Numbers H_{n} as defined by A. F. Horadam [2],

$$
\mathrm{H}_{1}=\mathrm{p}, \quad \mathrm{H}_{2}=\mathrm{p}+\mathrm{q}
$$

and

$$
H_{n}=H_{n-1}+H_{n-2} \quad n \geqq 3
$$

The numbers p and q are arbitrary. By solving the difference equation for H_{n} by the usual procedure it is easy to see that

$$
\begin{equation*}
H_{n}=\frac{1}{2 \sqrt{5}}\left[1 a^{n}-m b^{n}\right] \tag{3}
\end{equation*}
$$

where

$$
1=2(p-q b), \quad m=2(p-q a)
$$

and a and b are the roots of the quadratic equation $x^{2}-x-1=0$. We call

$$
a=\frac{1+\sqrt{5}}{2} ; \quad b=\frac{1-\sqrt{5}}{2}
$$

so that
$a+b=1, \quad a b=-1$,
$a-b=\sqrt{5}$.

By making use of these results we get

$$
\begin{aligned}
& 1+m=2(2 p-q), \quad 1-m=2 q \sqrt{5}, \\
& \frac{1}{4} \operatorname{lm}=p^{2}-p q-q^{2}=e \text { (say). }
\end{aligned}
$$

It is also easy to see that $H_{n}=p F_{n} \neq q F_{n-1}$ where F_{n} is the $n{ }^{\text {th }}$ Fibonacci number given by

$$
\frac{a^{n}-b^{n}}{\sqrt{5}}
$$

SECTION 2

In this section we obtain certain identities for the generalized Fibonacci numbers. From result (9) of [2] we have the identity

$$
H_{r-1}^{2}+H_{T}^{2}=(2 p-q) H_{2 r-1}-e F_{2 r-1}
$$

In this relation putting $r=2,3, \cdots, n$ in succession, adding and simplifying, we arrive at the result

$$
\begin{equation*}
\sum_{r=1}^{n} H_{r}^{2}=F_{n}\left[(p+2 q) H_{n}+e F_{n-1}\right]+p q\left[(-1)^{n}-1\right] \tag{1}
\end{equation*}
$$

Consider now $H_{2 r-1}=\mathrm{pF}_{2 \mathrm{r}-1}+\mathrm{qF}_{2 \mathrm{r}-2}$ so that

$$
\sum_{r=1}^{n} H_{2 r-1}=p \sum_{r=1}^{n} F_{2 r-1}+q \sum_{r=1}^{n} F_{2 r-2}
$$

From the formula for F_{n} this sum reduces to
(2)

$$
\sum_{r=1}^{\mathrm{n}} \mathrm{H}_{2 \mathrm{r}-1}=\mathrm{H}_{2 \mathrm{n}}-\mathrm{H}_{2}+\mathrm{H}_{1}
$$

$$
\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{H}_{2 \mathrm{r}}=\mathrm{H}_{2 \mathrm{n}+1}-\mathrm{H}_{1}
$$

On the same lines we get the following identities
(4)
(5)

$$
\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{H}_{3 \mathrm{r}-2}=\frac{1}{2}\left[\mathrm{H}_{3 \mathrm{n}}-\mathrm{H}_{2}+\mathrm{H}_{1}\right]
$$

$$
\sum_{r=1}^{n} H_{3 r-1}=\frac{1}{2}\left[H_{3 n+1}-H_{1}\right]
$$

(6)

$$
\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{H}_{3 \mathrm{r}}=\frac{1}{2}\left[\mathrm{H}_{3 \mathrm{n}+2}-\mathrm{H}_{2}\right]
$$

(7)

$$
\sum_{r=1}^{n} H_{4 r-3}=F_{2 n-1} H_{2 n}-H_{2}+H_{1}
$$

(8)

$$
\begin{aligned}
& \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{H}_{4 \mathrm{r}-2}=\mathrm{F}_{2 \mathrm{n}^{\prime} \mathrm{H}_{2 \mathrm{n}}} \\
& \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{H}_{4 \mathrm{r}-1}=\mathrm{F}_{2 \mathrm{n}^{\prime} \mathrm{H}_{2 \mathrm{n}+1}}
\end{aligned}
$$

(10)

$$
\sum_{r=1}^{n} H_{4 r}=F_{2 n+1} H_{2 n+1}-H_{1}
$$

(11)

$$
\sum_{r=1}^{n} H_{2 r-1}^{2}=\frac{1}{5}\left[H_{2 n}\left(H_{2 n-1}+H_{2 n+1}\right)+2 n e+q(q-2 p)\right]
$$

(12)

$$
\sum_{r=1}^{n} H_{2 r}^{2}=\frac{1}{5}\left[H_{2 n+1}\left(H_{2 n}+H_{2 n+2}\right)-2 n e-p(p+2 q)\right]
$$

Let us now consider product terms as follows:
(13)

$$
\sum_{r=1}^{n} H_{2 r-2} H_{2 r-1}=\frac{1}{5}\left[H_{2 n-1}^{2}+H_{2 n}^{2}-n e-(p+q)(p+2 q)\right]
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r-1} H_{2 r}=\frac{1}{5}\left[H_{2 n}^{2}+H_{2 n+1}^{2}+n e-\left(p^{2}+q^{2}\right)\right] \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r-1} H_{2 r+1}=\frac{1}{5}\left[H_{2 n+1}\left(\mathrm{H}_{2 n}+H_{2 n+2}\right)+3 n e-p(p+2 q)\right] \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r} H_{2 r+2}=\frac{1}{5}\left[H_{2 n+2}\left(H_{2 n+1}+H_{2 n+3}\right)-3 n e-(p+q)(3 p+q)\right] \tag{16}
\end{equation*}
$$

Corresponding to the identity

$$
\mathrm{F}_{\mathrm{r}}^{2}-\mathrm{F}_{\mathrm{r}-\mathrm{k}} \mathrm{~F}_{\mathrm{r}+\mathrm{k}}=(-1)^{\mathrm{r}-\mathrm{k}_{\mathrm{F}_{\mathrm{k}}}^{2}}
$$

for the generalized Fibonacci numbers we get in the generalized Fibonacci numbers the identity ${ }^{\circ}$

$$
\begin{equation*}
\mathrm{H}_{\mathrm{r}}^{2}-\mathrm{H}_{\mathrm{r}-\mathrm{k}} \mathrm{H}_{\mathrm{r}+\mathrm{k}}=(-1)^{\mathrm{r}-\mathrm{k}_{\mathrm{eF}}^{\mathrm{k}}}{ }^{2} \tag{17}
\end{equation*}
$$

Now consider the sums
(18) $\quad \sum_{r=1}^{n} H_{2 r-2} H_{2 r+2}=\frac{1}{5}\left[H_{2 n+1}\left(H_{2 n}+H_{2 n+2}\right)-7 n e-\left(p^{2}+2 p q+10 q^{2}\right)\right]$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r-1} H_{2 r+3}=\frac{1}{5}\left[H_{2 n+2}\left(H_{2 n+1}+H_{2 n+3}\right)+7 n e-(p+q)(3 p+q)\right] \tag{19}
\end{equation*}
$$

Evaluating the quantity $\mathrm{H}_{\mathrm{k}} \mathrm{H}_{\mathrm{k}+1} \mathrm{H}_{\mathrm{k}+2}$ we get

$$
\begin{equation*}
\mathrm{H}_{\mathrm{k}} \mathrm{H}_{\mathrm{k}+1} \mathrm{H}_{\mathrm{k}+2}=\mathrm{H}_{\mathrm{k}+1}^{3}+(-1)^{\mathrm{k}-1} \mathrm{eH}_{\mathrm{k}+1} \tag{20}
\end{equation*}
$$

Therefore

$$
\mathrm{H}_{2 \mathrm{r}-1} \mathrm{H}_{2 \mathrm{r}} \mathrm{H}_{2 \mathrm{r}+1}=\mathrm{H}_{2 \mathrm{r}}^{3}+\mathrm{eH}_{2 r}
$$

Hence

$$
\sum_{r=1}^{n} H_{2 r-1} H_{2 r} H_{2 r+1}=\sum_{r=1}^{n} H_{2 r}^{3}+e \sum_{r=1}^{n} H_{2 r}
$$

After simplification this becomes,

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r-1} H_{2 r} H_{2 r+1}=\frac{1}{4}\left[\left(\mathrm{H}_{2 n+1}^{3}-H_{1}^{3}\right)+\mathrm{e}\left(\mathrm{H}_{2 n+1}-\mathrm{H}_{1}\right)\right] \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{r}^{3}=\frac{1}{2}\left[\left(H_{n} H_{n+1}^{2}-q^{2} H_{2}\right)+e\left\{(p-2 q)-(-1)^{n_{H}} H_{n-1}\right\}\right] \tag{22}
\end{equation*}
$$

Now

$$
\mathrm{H}_{2 r}^{3}=\left(\mathrm{pF}_{2 \mathrm{r}}+\mathrm{qF}{ }_{2 r-1}\right)^{3}
$$

On expanding the right side, taking the sum from $r=1$ to n and simplifying we get the relation

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r}^{3}=\frac{1}{4}\left[\left(H_{2 n+1}^{3}-H_{1}^{3}\right)-3 e\left(H_{2 n+1}-H_{1}\right)\right] \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r^{H}} H_{2 r-1}^{2}=\frac{1}{4}\left[\left(\mathrm{H}_{2 n-1} H_{2 n+1}^{2}-H_{1} q^{2}\right)+e\left(H_{2 n}-H_{2}\right)\right] \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{n} H_{2 r-1}^{2}=\frac{1}{4}\left[\left(H_{2 n}^{3}-q^{3}\right)+3 e\left(H_{2 n}-q\right)\right] \tag{26}
\end{equation*}
$$

From the formula for H_{r} we can find the sums of the following:
(27)

$$
\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{rH}_{\mathrm{r}}=\mathrm{nH}_{\mathrm{n}+2}-\mathrm{H}_{\mathrm{n}+3}+\mathrm{H}_{3}
$$

(28)

$$
\begin{aligned}
& \sum_{r=0}^{n}(-1)^{r} r_{r H_{r}}=\left[(-1)^{n}\left[(n+1) H_{n-1}-H_{n-2}\right]+(3 q-2 p)\right] \\
& \sum_{r=0}^{n}(-1)^{r} H_{2 r}=\frac{1}{5}\left[(-1)^{n+1}\left(H_{2 n}+H_{2 n+2}\right)-(p+2 q)\right]
\end{aligned}
$$

$$
\begin{equation*}
\sum_{r=0}^{n}(-1)^{r_{H}}{ }_{2 r+1}=\frac{1}{5}\left[(-1)^{n}\left(H_{2 n+1}+H_{2 n+3}\right)+(2 p-q)\right] \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{rH}_{2 \mathrm{r}}=\left[\mathrm{nH}_{2 \mathrm{n}+1}-\mathrm{H}_{1}\right]-\left[\mathrm{H}_{2 \mathrm{n}}-\mathrm{H}_{2}\right] \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{rH}_{2 \mathrm{r}+1}=\mathrm{nH}_{2 \mathrm{n}+2}-\left[\mathrm{H}_{2 \mathrm{n}+1}-\mathrm{H}_{1}\right] \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{rH}_{2 \mathrm{r}}=\frac{1}{5}\left[(-1)^{\mathrm{n}}\left((\mathrm{n}+1) \mathrm{H}_{2 \mathrm{n}}+\mathrm{nH}_{2 \mathrm{n}+2}\right)-\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)\right] \tag{33}
\end{equation*}
$$

$$
\sum_{r=0}^{n}(-1)^{r} \mathrm{rH}_{2 \mathrm{r}+1}=\frac{1}{5}\left[(-1)^{\mathrm{n}}\left((\mathrm{n}+1) \mathrm{H}_{2 \mathrm{n}+1}+\mathrm{nH}_{2 \mathrm{n}+3}\right)-\mathrm{H}_{1}\right]
$$

It is easy to see that the list of identities given by K. Subba Rao can be extended to Fibonacci Quaternions defined by

$$
Q_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}}+\mathrm{iF} \mathrm{~F}_{\mathrm{n}+1}+j F_{\mathrm{n}+2}+\mathrm{kF} \mathrm{~F}_{\mathrm{n}+3}
$$

The author is very grateful to Dr. J. Sethuraman for valuable suggestions.

REFERENCES

1. V. C. Harris, "On Identities Involving Fibonacci Numbers," The Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 214-218.
2. A. F. Horadam, "The Generalized Fibonacci Sequence," The Amer. Math. Monthly, Vol. 68, No. 5, 1961, pp. 455-459.
3. A. F. Horadam, "Fibonacci Number Triples," The Amer. Math. Monthly, Vol. 68, No. 8, 1961, pp. 751-753.
4. Subba K. Rao, "Some Properties of Fibonacci Numbers," The Amer. Math. Monthly, Vol. 60, 1953, pp. 680-684.
