SUMS INVOLIING FIBONACCI NUMBERS

MUTHUL AK SHMI R. IYER
Indian Statistical Institute, Calcutta, India

1. INTRODUCTION

In [1] Professor Horadam has defined a certain generalized sequence

$$
\left\{\mathrm{w}_{\mathrm{n}}\right\} \equiv\left\{\mathrm{w}_{\mathrm{n}}(\mathrm{a}, \mathrm{~b} ; \mathrm{p}, \mathrm{q})\right\}: \mathrm{w}_{0}=\mathrm{a}, \mathrm{w}_{1}=\mathrm{b}
$$

and

$$
w_{n}=p w_{n-1}-q w_{n-2} \quad(n \geq 2)
$$

for arbitrary integers a and b. The $n^{\text {th }}$ term of this sequence satisfies a relation of the form:

$$
\mathrm{w}_{\mathrm{n}}=\mathrm{A} \alpha^{\mathrm{n}}+\mathrm{B} \beta^{\mathrm{n}}
$$

where

$$
\mathrm{A}=\frac{\mathrm{b}-\mathrm{a} \beta}{\alpha-\beta} ; \quad \mathrm{B}=\frac{\mathrm{a} \alpha-\mathrm{b}}{\alpha-\beta}
$$

α and β being the roots of the equation $x^{2}-p x+q=0$. He also mentions the particular cases of $\left\{w_{n}\right\}$ given by

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{n}}(1, \mathrm{p} ; \mathrm{p}, \mathrm{q})=\mathrm{u}_{\mathrm{n}}(\mathrm{p}, \mathrm{q}) \\
& \mathrm{w}_{\mathrm{n}}(2, \mathrm{p} ; \mathrm{p}, \mathrm{q})=\mathrm{v}_{\mathrm{n}}(\mathrm{p}, \mathrm{q}) \\
& \mathrm{w}_{\mathrm{n}}(\mathrm{r}, \mathrm{r}+\mathrm{s} ; 1,-1)=\mathrm{h}_{\mathrm{n}}(\mathrm{r}, \mathrm{~s}) \\
& \mathrm{w}_{\mathrm{n}}(1,1 ; 1,-1)=\mathrm{f}_{\mathrm{n}}=\mathrm{u}_{\mathrm{n}}(1,-1)=\mathrm{h}_{\mathrm{n}}(1,0) \\
& \mathrm{w}_{\mathrm{n}}(2,1 ; 1,-1)=1_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}}(1,-1)=\mathrm{h}_{2}(2,-1)
\end{aligned}
$$

wherein F_{n} and L_{n} are the famous Fibonacci and Lucas sequences respectively.

SECTION 2

In this paper our object is to derive some relations connecting the sums of the above sequences up to n terms.

We shall derive a formula for the sum of the mostgeneral sequence $\left\{w_{n}\right\}$ and thereby obtain the sums of the other sequences.

Theorem:

$$
\sum_{r=0}^{n} w_{r}=a+\frac{b T_{n}-a q T_{n-1}}{1-p+q}
$$

where

$$
\mathrm{T}_{\mathrm{n}}=1-\lambda_{\mathrm{n}}
$$

and

$$
\lambda_{n}=u_{n}-q u_{n-1}
$$

Consider

$$
\begin{aligned}
\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{w}_{\mathrm{r}}=\mathrm{A} \sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha^{\mathrm{r}} & +B \sum_{\mathrm{r}=0}^{\mathrm{n}} \beta^{\mathrm{r}} \\
& =\frac{\mathrm{b}-\mathrm{a} \beta}{\alpha-\beta} \frac{\alpha^{\mathrm{n}+1}-1}{\alpha-1}+\frac{\mathrm{a} \alpha-\mathrm{b}}{\alpha-\beta} \frac{\beta^{\mathrm{n}+1}-1}{\beta-1}
\end{aligned}
$$

This becomes, after simplification by using the facts $(\alpha+\beta)=p, \alpha \beta=q$, $\alpha-\beta=\mathrm{d}$

$$
\left[(a+b-a p)+a q\left(u_{n-1}-q u_{n-2}\right)-b\left(u_{n}-q u_{n-1}\right)\right] /(1-p+q)
$$

Set

$$
u_{n}-q u_{n-1}=\lambda_{n}
$$

Then, this becomes

$$
\begin{gathered}
{\left[(a+b-a p)+a q \lambda_{n-1}-b \lambda_{n}\right] /(1-p+q)} \\
{\left[a\left(1-p+q-q+q \lambda_{n-1}\right)+b\left(1-\lambda_{n}\right)\right] /(1-p+q)} \\
a+\left[-a q\left(1-\lambda_{n-1}\right)+b\left(1-\lambda_{n}\right)\right] /(1-p+q)
\end{gathered}
$$

let now

$$
1-\lambda_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}
$$

therefore we finally obtain
(1)

$$
\sum_{r=0}^{n} w_{r}=a+\frac{b T_{n}-a q T_{n-1}}{1-p+q}+\cdots
$$

Hence the result.
From this we can obtain immediately the sums of $\Sigma u_{r}, \Sigma v_{r}, \Sigma F_{r}, \Sigma L_{r}$, etc.

$$
\sum_{r=0}^{n} u_{r}(p, q)
$$

is obtained by letting $\mathrm{a}=1, \mathrm{~b}=\mathrm{p}$ in (1)
(2)

$$
\sum_{r=0}^{n} u_{r}(p, q)=1+\frac{p T_{n}-q T_{n-1}}{1-p+q}
$$

$$
\sum_{r=0}^{n} u_{r}(p, q)=T_{n+1} /(1-p+q) \cdots
$$

$$
\sum_{r=0}^{n} v_{n}(p, q)
$$

can be obtained by putting $a=2, b=p, p, q$ in (1)

$$
\sum_{r=0}^{n} v_{r}(p, q)=2+\frac{p T_{n-2 q} T_{n-1}}{1-p+q}
$$

(3)

$$
\sum_{r=0}^{n} v_{r}(p, q)=1+\frac{T_{n+1}-q T_{n-1}}{1-p+q} \cdots
$$

In particular,

$$
\Sigma \mathrm{w}_{\mathrm{r}}(1,1 ; 1,-1)=\Sigma \mathrm{F}_{\mathrm{r}}=\Sigma \mathrm{u}_{\mathrm{r}}(1,-1)=\Sigma \mathrm{h}_{\mathrm{r}}(1,0)
$$

and

$$
\Sigma \mathrm{w}_{\mathrm{r}}(2,1 ; 1,-1)=\Sigma \mathrm{L}_{r}=\Sigma \mathrm{v}_{\mathrm{r}}(1,-1)=\Sigma \mathrm{h}_{\mathrm{r}}(2,-1)
$$

(i)

$$
\sum_{r=0}^{n} u_{r}(1,-1)
$$

is derived by putting $\mathrm{a}=\mathrm{b}=\mathrm{p}=1, \mathrm{q}=-1$ in (1).

$$
\text { In this case } \lambda_{n}=u_{n}+u_{n-1}=u_{n+1} \text {. Therefore }
$$

$$
\sum_{r=0}^{n} u_{r}(1,-1)=1+\frac{\left(1-u_{n+1}\right)+\left(1-u_{n}\right)}{1-1-1}
$$

$$
=1-\left[\left(1-u_{n+1}\right)+\left(1-u_{n}\right)\right]
$$

$$
\sum_{r=0}^{n} u_{r}(1,-1)=u_{n+2}-1=F_{n+2}-1
$$

This can be verified for any n.
(ii) To get $\Sigma \mathrm{v}_{\mathrm{r}}(1,-1)$ let $\mathrm{a}=2, \mathrm{~b}=\mathrm{p}=1, \mathrm{q}=-1$ in (1). Here also $\lambda_{n}=u_{n+1}$. So

$$
\begin{aligned}
\sum_{r=0}^{n} v_{r}(1,-1) & =2+\frac{\left(1-u_{n+1}\right)+2\left(1-u_{n}\right)}{1-1-1} \\
& =2-\left[3-2 u_{n}-u_{n+1}\right] \\
& =u_{n}+u_{n+2}-1 \\
& =v_{n+2}-1
\end{aligned}
$$

This also can be very easily verified for any n.
(iii) Now to evaluate

$$
\sum_{r=0}^{n} h_{r}(p, q)
$$

set

$$
\mathrm{a}=\mathrm{p}, \quad \mathrm{~b}=\mathrm{p}+\mathrm{q}, \quad \mathrm{p}=1, \quad \mathrm{q}=-1
$$

in (1). Here again

$$
\lambda_{n}=u_{n+1}=F_{n+1}
$$

Then

$$
\begin{aligned}
\sum_{r=0}^{n} h_{r}(p, q) & =p-\left[(p+q)\left(1-F_{n+1}\right)+p\left(1-F_{n}\right)\right] \\
& =(p+q) F_{n+1}+p F_{n}-(p+q) \\
& =\left(p F_{n+2}+q F_{n+1}\right)-(p+q) \\
\sum_{r=0}^{n} h_{r}(p, q) & =h_{n+2}-(p+q) \text { by }[2] \quad \cdots\left(1_{i i i}\right)
\end{aligned}
$$

$1, l_{i},\left(l_{i i}\right),\left(l_{i i i}\right)$ can be proved for all (+ve) integers n by induction. We shall here prove (1) as an illustration. Let us suppose that
(1) ${ }^{\mathrm{P}}$

$$
\sum_{r=0}^{k} w_{r}=a+\frac{b T_{k}-a q T_{k-1}}{1-p+q}
$$

Next let us add $\mathrm{w}_{\mathrm{k}+1}$ to both sides, to get

$$
\begin{aligned}
& \sum_{r=0}^{k+1} w_{r}= a+\frac{b T_{k}-a q T_{k-1}}{1-p+q}+w_{k+1} \\
&= a+\frac{b\left(1-u_{k}+q u_{k-1}\right)-a q\left(1-u_{k-1}+q u_{k-2}\right)}{1-p+q} \\
&+A \alpha^{k+1}+B \beta^{k+1} \\
& \begin{aligned}
\sum_{r=0}^{k+1} w_{r}= & a+\frac{b\left(1-u_{k}+q u_{k-1}\right)-a q\left(1-u_{k-1}+q u_{k-2}\right)}{1-p+q} \\
& +b u_{k}-a q u_{k-1}
\end{aligned} \\
&= a+\frac{1}{1-p+q}\left[b\left(1-u_{k+1}+q u_{k}\right)-a q\left(1-u_{k}+q u_{k-1}\right)\right]
\end{aligned}
$$

(4)

$$
\sum_{r=0}^{k+1} w_{r}=a+\frac{b T_{k+1}-a q T_{k}}{1-p+q}
$$

Equation (4) is of the same form as (1)' with k replaced by $k+1$. Hence, etc. Similarly other results can be proved for all positive integral values of n.

REFERENCES

1. A. F. Horadam, "Basic Properties of a Certain Generalized Sequence of Numbers, " The Fibonacci Quarterly, Vol. 3, 1965, pp. 161-176.
2. A. F. Horadam, "Complex Fibonacci Numbers and Fibonacci Quaternions," Amer. Math. Monthly, Vol. 70, 1963, pp. 289-291.
3. K. Subba Rao, "Some Properties of Fibonacci Numbers," Amer. Math. Monthly, Vol. 60 (1953), pp. 680-684.
[Continued from p. 91.]
4. Tobias Dantzig, Bequest of the Greeks, New York, Charles Scribner's Sons, 1955, pp. 61-62.
5. Marvin H. Holt, "Mystery Puzzler and Phi," The Fibonacci Quarterly, Vol. 3, No. 2, April 1965, pp. 135-138.
6. H. E. Huntley, "The Golden Cuboid," The Fibonacci Quarterly, Vol. 2, No. 3, October 1964, p. 184^{+}.
7. Joseph A. Raab, "A Generalization of the Connection Between the Fibonacci Sequence and Pascal's Triangle," The Fibonacci Quarterly, Vol. 1, No. 3, October 1963, pp. 21-31.
