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1. INTRODUCTION

In this paper we shall study the following formulae for the Fibonacci

numbers.

= (23 n-1
(1.1) Fn = Z(-l) <[_%_ (Il -1 - 5&)]) s

n=-oo
,17'

o0 N
B o n
(1.2) - z :('1) ([%(n -1 - 5a)]>

=-00

where (&

is the ordinary binomial coefficient, and [x] is the greatest
integer function.
In Section 2, we shall prove these formulae and shall show how directly

they imply the following famous congruences [4; p. 150].

(1.3) F /5\ = 0 (mod p) ,
(3

1]

(1.4) Fp (—g) (mod p),

where (—S) is the Jacobi-Legendre symbol.

Chapter IV of Dickson's History, Vol. 1 [2; pp. 105-112] is devoted to
studying (up"1 - 1)/p (mod p). In particular, Einstein made several contri-
butions to this problem among which was the following. If p # 2,

@ - 1)/p = 1+1/3+1/5+++-+1/p-2 (modp).
*Partially supported by National Science Foundation Grant GP 6663.
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114 SOME FORMULAE FOR THE FIBONACCI SEQUENCE [Apr.

We shall prove analogous formulae for

and

in Section 3. Namely, if p = 2 (mod 5),

(1.5) Fp+1/p = 2(_]_)%@-1) Z 5 2/ (mod p) .

m=1, 5(mod 10)
[mf<p

If p= 1l (mod 5),

% m+1)f-1
- o 172(P-1 5 m
(1.6) Fp_i/p = 2(-1) Z = (mod p) .

ms=s5,7(mod 10)
|m|<p

For all primes p,

(1.7) <Fp - (—S-))/p = 2(_1)'%([3-—1) Z 5p . mm (mod p).

m=4,7(mod 10)
|m| <p

In Section 4, we make the natural generalization of (1.1) and (1.2) by
replacing 5 by an arbitrary odd number. This leads us immediately to an
n-dimensional analog of the Fibonaceci humbers which is closely related to one
considered by Raney.

In Section 5, we point out an application of these generalized sequences
to the factorization of large numbers, and in Section 6, we discuss related

sequences.
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2, THE NEW FORMULAE

Let us define

F_()

Then if B = exp (2mi/5),

F _(b) =

SIS (-1>5°"’B([1}(n I 50,)])

a=-co

(-1) Z Z (-1) B](Ol—b)< (nri a)})

4
b+n . . n
(-1) Z -jb (-a+n)
5 B ) E (-1)aBJ 8 <[%01 ])

o

Z BJ(n-—b)

(- 1)b+n Z B - 2]& (n>

a=-00

5 ()

b+n 4 . : ;
H__ N gl gy g
i=o
b A .
LD S P - p7I)(-2 cos 2mi/s)

e
-

(-1 b

1 (ﬂ-jb N ij _ B-j(b+1) _ Bj(bﬂ)) X

.Mm

j X (-2 cos 2mj/5)"

o 1

2("1) Z (eos 2mjb/5 - cos 2mj(b + 1)/5) X

i=1 X (-2 cos 2mj/5)"
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Now
1
-2 cos 2m/5 = -2cos 87w/5 = (1 - 52) ,
and
1
-2 cos 4m/5 = -2 cos 6m/5 = }(1 + 5) .
Hence
F () = =@2+2(1 shda - syt s Leslaest byn
L0 = 5@+50 - 5)(3Q - 5%))" + £ @2+5(1+5))¢ (1+5%))
1
= shg s - (ja - st
= F ., the (n+1)St Fibonacci number [4; p. 148] .
1
F @O = - %(—%(1 -5%) +i@+ 5%))(»%(1 - 5%))n

Lgaash rpa-shygasshn

1
s+ 5P - (G- s

F» the n® Fibonacei number [4; p. 148] .

Thus we have (1.1) and (1.2).
We now turn our attention to proving (1.3) and (1.4) utilizing (1.1) and (1.2).

Our proof rests on the following elementary congruence

py _ J1 if a=20,p
2.1) (a) - {0 otherwise (mod p) ,

where p is any prime.

If p =5mt2, then for any integer o,

[ - 5] # 0,p ;

therefore by (2.1) p divides every term of the sum in (1.1) with n = p+ 1,
and (1.3) is established in this case. Utilizing (1.2) with n = p = 5m + 2,
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we may verify that (1.4) holds in this case. If
n-1=p=5m=+1,
then by means of (1.1) we verify that

Fp+1 = -1 (mod p),

and by means of (1.2) with
n=p-=>5mz=1l

we verify that Fp = 1 (mod p). Thus we have completely established (1.4)
with p # 5, and '

Fp_1 = Fp+1— Fp = -1+1 =0 (modp)
establishes completely (1.3) with p # 5. Finally since F; = 5 we have (1.3)

and (1.4) proved in this exceptional case as well.

3. EINSTEIN FORMULAE FOR F‘n .

This section is devoted to proving (1.5), (1.6), and (1.7). We shall uti-
lize the following congruence

(3.1 p_1<g> = -(-D%*a"! (mod p), 0<a<p

In the following sums, we note that the only terms to be comsidered are those
for which initially the lower entry of the binomial coefficient is in the open
interval (0,p). We shall thus not trouble to indicate the range of summation
until the final line in each case.

From (1.1) with n-1 =p = 2m + 1,

It

o0 20
_ a p p p
(3.2) Fom+p = Z(’l) <[%(2m+ 1 - 5a)]) Z <m-— > ‘<m-2—5a> .

=-00
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Hence

( 1)m+oz (_1)m+a'

Pty /P EZ {—m_— 5 m - 5x - 2} (mod p)

o+

Hp-1) (-1) (S
2(pf0y "L e mod p)

2 (-1)_%(13_1) Z 3 = (mod p) .

m=1,5(mod 10)
[m| <p

From (1.2) with n = p = 2m + 1,

on ran S o) - Zlfe) )

== o0 ==

Therefore if p is a prime =11 (mod 5), we have by (3.2) and (3.3)

(3.4) Foy = Fouy - Fp = O

Hence from (3.4) with p = #1 (mod 5) ,

e o]
_ (-1 (-1
Fo /P = Z mo3-5a "Tm-2-5a ( Modp)
o=-0
= 2t "™ cu” €U | mod p)
= p-7-T0a¢  p-b- P
m+1 _l
= 2(yte-? Z 5p L0 (mod p) .

m=5,7 (mod 10)
|m|<p
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Finally from (3.3) with p = 2m + 1

(- ()5

(_1)m+a (_1 m-o
ST e

o o
-2 <-1>"}(‘°’”23 D T * p- ’(7—})10a$ (mod p)

1 !m + 2 ’ (:l)
2(—1)_2{13_1) E : 2 L tmod p) .

p-m

m=1,7 (mod 10)
m]<p

Thus we have established (1.5), (1.6), and (1.7).
Let us now consider a specific example. By (1.1)

_ {18 13 13 13 13} _ =
Fy = (6) - (4) - <9) + (1> +<11) = 1716 -715- 715+ 13+78=377

By (L.3),
_ 1 1 1 1 1
Fu/13 = 2\ g "5 -5 - T -1 55 1359
= 1+1/4-1/6-1/9+1/11 =1+10-11-3+6 = 3 (mod 13),
and indeed,

F14/13 =29 = 3 (mod 13) °

4, GENERALIZATIONS

In this section we discuss the natural generalization of (1.1) and (1.2).
We define

o0
(4.1) F, () = 1% n .
k,n ;w (g{(n -b- 2k + 1)a)]>
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Exactly as in Section 2, only now setting
B = exp @mi/2k+1),

we obtain

(4.2) Fk,n(b) =

pof bo

k
b
1(51)1 Z(cos (2mbj/2k + 1) - cos (2alb + 1)j/2k + 1) X
=

X (=2 cos (2mj/2k + 1))°,
where k> 0, n > 0.

From (4.2) we may easily ascertain the linear recurrence in n satisfied
by the Fk n(b). Consider the sequence of polynomials defined by
t]

fQ(X) = 1, fi(x) =x-1, fk(x) = ka_i(x) "fk_z(x) .

Then the roots of fk-(X) are
-2 cos 2mi/2k + 1, 1<j<k

[3; p. 264 ]. Hence from the elementary theory of finite difference (with

we have
(4.3) fk(E)Fk,n(b) =0 .

The n-dimensional Fibonacci sequence studied by Raney [5] has as its auxil-

iary polynomial Dn(x) [5; p. 347] where in our notation

£ 6 = (i1 o p &) .
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Raney remarks that many of the elementary formulae related to the Fibonacci
k n(b)'
Most of these results may be derived from (4.2); but the proofs are clumsy. It

numbers maybe generalized tohis sequences, and the same is true of F

would be nice to relate these sequences to some set of matrices as Raney has
done for his sequences;perhaps then easy proofs could be given for analogs of

Theorems 7 and 8 of Raney's paper.

5. FACTORIZATION OF LARGE NUMBERS

As is well known the Fibonacci and Lucas numbers are closely related
to Lucas's famous test for the primality of the Mersenne numbers 2P _ 1. we
shall derive some similar necessary conditions for the primality of &P - 1)/
k - 1 utilizing some analogs of the Lucas sequence which are related to the
generalized Fibonacci sequences discussed in Section 4, For example, when
k = 2, we shall prove the necessity part of Lucas’s theorem on the primality
of 29 -1 (with q = 3 (mod 4)) [4; p. 224]. When k = 2 and q = 1 (mod 4),
we shall prove the following result.

Theorem 3. Let T be defined by

ry =3, r =r: -2,

24

If q=1(mod4) and Mq
When k= 3 and g

Theorem 4. Let s

-1 are both primes, then rq = 3 (mod Mq Yo

1 (mod 6), we have the following theorem.

1, ty = -2, and in general

= 3 - -3 = -+
S, 44 s3 -3s t -5 tn+1 t?l 3t t3 .

If q=1(mod6) and Mq ="%—(3q - 1) are both primes, then

]
il

4 d s
(mo Mq)

o
|

-1 .
1 (mod Mq)

Our first object in this section will be the derivation of a general theorem

which will imply Theorems 3 and 4.
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Let Aj (k) denote the set of all ordered j-tuples of the first k positive
integers. We define

L o = Z (-2 cos 2my /2k + 1)™.. (-2 cos 2 /2k + )"

where the summation is over all
(ng, **+,n.) € A.(k) .
J J
We shall also need the polynomials

m

Wm(x) = Z (2;;1> xzm_zj(l—xz)j;

j=0
these polynomials have the property that

cos 2mpB = W (cos B) .

Lemma 1, Let p be an odd prime, p =n (mod 2k +1), 0 < n < 2k,
Then there exists a rational integer a(k;j;n), which depends only on k,j, and
n and not on the magnitude of p such that

Ly (egprs® = @05 5 n)  (modp) .

Proof. Define n' to be n if n is even and n+2k+1 if n is odd;
nx = %n'. Then in the ring of integers of Q(-2 cos 27n/2k + 1)
Hp-1)

Po-pHi p . .
(-2)"2 Z (m A 1) cos 2x(2i + 1)j/2k + 1
i=0

(-2 cos 2mj/2k + 1)P

1l

-2 cos 2mpj/2k + 1 (mod (p) )

1l

-2 cos 2mj/2k+ 1 (mod (p))

n

-2 cos 2m'j/2k+1 (mod (p) ) ,

mn
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where (p) is the principal ideal generated by p in the ring of integers of
Q(-2 cos 2n/2k + 1) and this first equality is from [1; p. 83]. Consequently

6D Lo gpn® = Z (-2 cos 2mny/2k + 1) "H(-2 cos 2m,/2k + 1) ++ -

eee (-2 cos 2m'n, /2k + 1)¥"Y-2 cos 2m. /2k + 1)
J (mod (p) )

(5.2) = Z (-2w__ (cos 2my /2k + 1)""!(-2 cos 2my/2k + 1)+ -

cos (—2Wn* (cos Z'Jrnj /2k + 1))k_1(—2 cos 27mj /2k + 1)
(mod (p)).

We now define a(k;j;n) to be the expression appearing on the right side of
(5.1) (or, what is the same thing, (5.2)). Now (5.2) shows that a(k;j;n) is a
symmetric polynomial in cos 2mm/2k+ 1, 1 < m < k; since these are the
roots of fk(-Zx) (c. f. Section 4), we see by the Symmetrib function theorem
that o(k;j;n) is a rational number. On the other hand, (5.1) shows that
a(k;j;n) is an integer of the field Q(-2 cos 2@/2k + 1); since the rational inte-
gers are integrally closed in Q(-2 cos 2n/2k + 1), we see that a(k;j;n) must

be a rational integer. Hence
L (egpr® = @ls in)  (mod (b))

holds in the ring of integers of Q(-2 cos 2a/2k + 1). Since this congruence
involves only rational integers, it must also hold in Z, the ring of rational
integers. Thus Lemma 1 is proved.

Corollary 1. Ifin Lemma 1, n = 1 or 2k, then

Lk:(k-i)p'l‘i(j) = Lk,k(j) (mod p .

Proof. In (5.1) with n' either 2k or 2k + 2, we have

alsfn) = > (-2 cos 2my /2k + 1) +++ (-2 cos 2m /2k + nE=1, L
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The desired results now follow directly from Lemma 1.
We now proceed to our main result.
Theorem 1. Let k > 2 be an integer. Let

Ok, = o-k’j(xp cee, Xn)

be the jth elementary symmetric function of xy,**+,xi. Let gj (yi, ceeL Vi)
be the polynomial with integral coefficients such that

0 (Xk o e 9 Xk) = (U LN ) o' )
3 A - e P % S
Let

Vk, o(j) = Lk, 1(j)
and

Vk,n+1(j) = gj (Vk,n(l), cee "ﬁ(’n(k) ) .

If ke=g.c.d k-1, 2k +1), define m = k#x(2k +1), and let ¢(m) = m?!,
$m') = m" where ¢ is Euler's totient function.

If q >m and Mq = 9 - 1)/k - 1 are both primes, then there exist
integers B(k;j;i), 1 < i < m" depending only on k and j such that

‘i{’q(j) = B(kjn) (mod Mq) ,

if q = a, (mod m'"), where aj,°**,a

S constitute a reduced residue class

system (mod m').

Proof. From the definition of Lk,n(j)’ one easily verifies by induction
that Lk’kn(j) = Vk,n(j). One also may verify that the residue of Mq (mod 2k
+ 1), say r, is completelydetermined by the residue of q (mod m'"). There-
fore if both ¢ > m and M'q are primes,

Vk’q(j) = Lk,kq(j) = Lk,(k—i)Mq+1(i) = ak; j; 1) (mod Mq) .
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If we define
Blis 3 n) = ak; jr)
where q = a, (mod m!"), then the theorem follows.

For small values of k we may prove more explicit theorems.
Theorem 2. (Lucas) Let r, be defined by

¥ = = 2 —
bl 3, Ties = Tp 2.
If q =3 (mod4) and Mq = 2P -1 areboth primes, then rq_1 = 0 (mod Mq).
Proof. In Theorem 1, with k = 2, we find that for n > 0

v3,n(2) = (-2 cos 2n/5)7 (-2 cos 4n/5)? = (-1 = 1.
Also
xj+ x5 = 0} -20,, .
Hence

g1y, y2) = ¥i - 2y2 .

Thus we see that r, = va,n{1)
As in Lemma 1, we have {(mod Mq)

r = (1) = (-2 cos 44/5)(-2 cos 2n/5) + (-2 cos 87/5)(-2 cos 4n/5)

L
2,M -+t
d q

2(-2 cos 4n/5)(-2 cos 2n/5) = -2,

Therefore

Thus since Mq was assumed prime,
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rq_1 = 0 (modMq).

This concludes the proof of Theorem 2.

Proof of Theorem 3. We proceed exactly as in Theorem 2, except that

now by Corollary 1

= L 1) = Lyo(1) = 3.
I‘q 2,Mq+1( ) 2,2( )

Proof of Theorem 4. In Theorem 1, with k = 3, wefind thatfor n = 0

Vs,n(3 = (-2 cos 20/ (-2 cos 4n/T) (-2 cos 6x/7)8 = (1) = L.

Now
x+x3+x3 =03, - 303,103, + 3033 ,
and thus
g1, y2»vs) = ¥i - 3yiyz + 3ys -
Also
xix) + ] + «dxd = 0, - 303,103,005,3 + 3035
and thus

2
221, Y2 ¥3) = V3 - 3yiyays + 3y3 .

Thus we see that

Sn = V3,n(1)

and

tn = V3’n(2) o



1969] WITH GENERALIZATIONS 127
Utilizing Corollary 1, we have (mod M q)

Lg,3(1) = 4 ;

]|

s =L 1
q 3,2M+1(1)

tq = L3’2Mq+1(2) = L3,3(2) = -11 .

This concludes Theorem 4.
Theorem 5. Under the conditions of Theorem 4, with the single change

that q = 5 (mod 6), if both g and Mq are primes, then

Sq = 4 (mod Mq).

Proof. Since ¢ = 5 (mod 6), Mq = 2 (mod 7). Hence by Lemma 1 we

have (mod Mq)

3
Sq = Lg,ZMqﬂ(l) = Z(-z cos 4mj/7)*(-2 cos 2mj/7)
j=1
3
Z(z cos? 2mj/7 - 1)2(-2 cos 27j/7)
j=1

1l
IS

3
= Z((-z cos 27j/7)% - 4(-2 cos 2mj/7)?
j=1 +4(-2 cos 27j/7))

= L3’5(1) - 4:L3’3(1) + 4L3,1(1)
=16 - 16 + 4 = 4,

We now consider some numerical examples of the theorems we have
proved. Firsttake q = 5, My = 121 in Theorem 5. In this case

n sy (mod 121) tlrl (mod 121)
0 1 -2

1 4 -11

2 72 -8

3 -6 -59

4 50 -66

5 -18
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Consequently Theorem 5 proves that 121 = %(35 - 1) is nota prime, and in-
deed 121 = 112,
Next we consider Theorem 4, with q =7, My = 1093. In this case

n s, (mod 1093) t (mod 1093)
0 1 -2
1 4 -11
2 193 -367
3 -249 -386
4 -510 -96
5 -569 -78
6 -127 -387
7 4 -11

Thus we see that 1093 = (37 - 1) satisfies the necessity conditions of Theo-
rem 4, and indeed it turns out that 1093 is a prime.

There appears to be a great number of possibilities for further work on
the subjects treated in this section. One would hope that Theorem 1 could be
strengthened to include sufficiency conditions for the primality of «P - 1)/
(k - 1). Possibly the arithmetic of the fields Q(-2 cos (27/2k + 1)) would
yield such results.

6. RELATED SEQUENCES

It is possible to exhibit a large number of sums similar to those given in
(1.1), (1.2), or (4.1). To indicate the possibilities we list three such.

0
_ n .
Q=-00
_ X o n .
6.2) Tea® = Z(-l) <[%<n_b_ (2k+1)2a)]) :
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Q0
Q = ¢ ( -
(6.3) Ky n® = Z 1) ([-%_(n ~b - @k +1)(2n+ 1>)]> '

=- 0

Following the method of Section 2, we find

k
6.4) G () =52 D (cos 2nbj2le+1) + cos 2n(b+1)j/2k +1) X
i=1 X (2 cos 2mj/2k + 1)
2k
1 .
6.5 3y b =5y Z (cosmb(@j+ 2k +1) /(4k+2)+ cosa (b +1) X
=t
X (4 + 2k + 1)/4k + 2)(-2 sin 2mj/2k + 1)
Kk 2k
_ =(-1) . . .
(6.6) K () = Z=Hr ) (sinwb(d + 2k + 1)/(@+2) + sinm b + 1)x
=t

X (4 + 2k + 1)/4k + 2) (-2 sin 2mj/2k + 1)

As in Section 4 (c.f. (4.3)), we may give linear recurrence formulae for the

above expressions as sequences in n.

(6.7) )E@E - 2, E)Gy () = 0
._.1 _ .

{6.8) E ((E+2)ff{(E) - Z)Jk’n(b) =0 ;
-1 _

6.9) E (E + 2)ff{(E) - Z)Kk,n(b) =0 .

Equations (6.7) through (6.9) are easily derived from Egs. (6.4) through (6.6)
utilizing the fact that the roots of (—l)k(x - Z)fk(—x) are 2 cos 2nj/(2k+1),
0<j<k [3 p. 264] and the fact that the roots of x M + 2)f12<(x) - 2) are
-2 sin 2mj/2k + 1, 1 <j < 2k [3; pp. 267-268].
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As is clear from their definitions, all these generalized sequences sat-
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isfy congruences similar to (1.3)and (1.4). For example if p is an oddprime,
p #2k+1, then

(6.10) Kk’p(O) = 0 (mod p) .
If p is an odd prime, p # 2k +1, p # #1 (mod 4k + 2), then

(6.11) (0) = 0 (mod p) .

Jk,p

If p=@k+1)m+a isaprimewith 0 <a =k, m =2, then

6.12) Gy 0) = F (0) = 0 (mod p) ,

»ptc k,ptc

where 0 =c =a - 2,
If p=@k+1)m+a isa prime with k < a =2k, m =1, then

(6.13) 0) = (0) = 0 (modp),

Gk,p+c Fk,p+c

where 0 =c¢ =2k -2 -a, Equations (6.10) through (6.14) are proved exactly
the way (1.3) and (1.4) were.
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