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1. INTRODUCTION 

In this paper we shall study the following formulae for the Fibonacci 
numbers. 

00 

(1-1} Fn= ^ " ( [ i ^ - V - t o ) ] ) 
_, n=-oo v / 

(1.2) J}-lf([i(n - 1Q- fe)]) 
Q>=-QQ x / 

where ( 1 is the ordinary binomial coefficient, and [x] is the greatest 
integer function. 

In Section 2, we shall prove these formulae and shall show how directly 
they imply the following famous congruences [4; p. 150], 

(1.3) F / 5 \ =• 0 (mod p) , 

(1.4) Fp = f |J (mod p), 

where (—J is the Jaeobi-Legendre symbol. 
Chapter IV of Dickson's History, Vol. 1 [2; pp. 105-112] is devoted to 

studying (u^""1 - l ) /p (mod p). In particular, Einstein made several contri-
butions to this problem among which was the following. If p / 2, 

(2P""1 - l ) /p = 1 + 1/3 + 1/5 + • • • + 1/p - 2 (mod p) . 
"^Partially supported by National Science Foundation Grant GP 6663. 
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114 SOME FORMULAE FOR THE FIBONACCI SEQUENCE [Apr. 

We shall prove analogous formulae for 

and 

(*> - ( # 

in Section 3. Namely, if p s ±2 (mod 5), 

(1.5) Fp+i/p e 2(-l)^> J ] \ B
p / W (xnod p) . 

m=i, 5(mod io) 
|m|<p 

If p = ±1 (mod 5), 

d.6) Fp.yp 5 2(-i)̂ <p-1) 2 
m=5,7(mod io) 

| m | < p 

For all primes p, 

^ ' ' m=i,7(mod io) 
|m| < p 

In Section 4, we make the natural generalization of (1,1) and (1.2) by-
replacing 5 by an arbitrary odd number. This leads us immediately to an 
n-dimensional analog of the Fibonacci numbers which is closely related to one 
considered by Raney. 

In Section 5, we point out an application of these generalized sequences 
to the factorization of large numbers, and in Section 6, we discuss related 
sequences. 

Mfe) 
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2* T H E N E W F O R M U L A E 

Let us define 

F n ( b ) = ^ <-W[ | ( n„n
b„5 a ) ] ) • 

a=-ao \ ' 

Then if 0 = exp (2m/5)9 

(- l)b 

a=-oo 

4 qo 

_ ( - l ) b + n 

j=0 Qf=-op * ' 
5 

4 

5 
j=0 a=-oo 
4 

j=0 ( #=~oo 

QF=-00 ' J 
4 

»izlpj;p,&l"w«i-i8"J)a+r?,)n 

3=0 
b 4 

i ^ - J ] ^ - j b ( l - /3"J)(-2 cos 27rj/5)n 

j=i 
. 2 

i^T £ tfTJb
 + ^ b -(,-iW _ pJO**-*)) x 

j=l X (-2 c o s 277j/5)n 

b 2 
2("5

1) ] T ( e o s 2 ^ b / 5 - cos 2TH (b + l)/5) X 
j=l X (-2 cos 2nj/5)n . 
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Now 

I 
-2 cos 2TT/5 = -2 cos 87r/5 = ^(1 - 52 ) , 

and 

Hence 

-2 cos 4TT/5 = -2 cos Qn/5 = \{1 + 52) 

Fn(0) = J ( 2 + | ( l - 52)(4(1 - 5*))n + ~(2+§(l + 5*))(i (1+ 5*))n 

= 5-*(( | ( l + 5*))n+1 - < j<l -5*) ) n 4 1 ) 

= F , the (n+1) Fibonacci number [4; p. 148] . 

Fn(l) = - | (-1(1 - 5*) + | ( 1 +' 5*))(-J(l - 5^))n 

- 1 4 ( 1 + 5*)-+j(l - 5*))(£(1 + 5*))n 

= 5 ^ ( ( | ( l + 5^))n - ( { ( l - 5 * ) ) n ) 

= F , the n Fibonacci number [4; p. 148] . 

Thus we have (1.1) and (1.2). 
We now turn our attention to proving (1.3) and (1.4) utilizing (1.1) and (1.2). 

Our proof rests on the following elementary congruence 

where p is any prime. 
If p = 5m ± 2 9 then for any integer a, 

[Up - to)] f 0,p ; 

therefore by (2.1) p divides every term of the sum in (1.1) with n = p + 1, 
and (1.3) is established in this case. Utilizing (1.2) with n = p = 5m ± 2, 
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we may verify that (1.4) holds in this case* If 

n - 1 = p = 5m ± 1 , 

then by means of (1.1) we verify that 

F = -1 (modp), 

and by means of (1.2) with 

n = p = 5m ± 1 

we verify that F = 1 (mod p). Thus we have completely established (1.4) 
with p f 5, and 

F = F , - F = - 1 + 1 = 0 (mod p) p-i p+i p F 

establishes completely (1.3) with p ^ 5. Finally since F 5 = 5 we have (1.3) 
and (1.4) proved in this exceptional case as welL 

3. EINSTEIN FORMULAE FOR F . 
n 

This section is devoted to proving (1.5), (1.6), and (1.7). We shall uti-
lize the following congruence 

(3.1) p l a ) " - ( - W ^ " 1 (modp) , 0 < a < p 

In the following sums, we note that the only terms to be considered are those 
for which initially the lower entry of the binomial coefficient is in the open 
interval (0,p). We shall thus not trouble to indicate the range of summation 
until the final line in each case. 

From (1.1) with n - 1 = p = 2m + 1, 

(3.2) F2m+2 = f^(-ifL2m +\ _fca) = x j L ^ J -( p 
m-2-5aJ 
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Hence 

V i / P 5 Z X^trW + m-Sa-i] ( m o d P ) 

B 2 ( -Ufe - 1 ) ^ ' 7 _ W (modp). 
m=i,5(modio) 

|m| <p 

From (1.2) with n = p = 2m +. 1, 

(3.3) F 2m+i 2^^1} l ± ( 2 m - t a ) ) 2 ^ j U ~ ^ ) " ( m - 3 - t o j j 

Therefore if p is a prime ==±1 (mod 5), we have by (3.2) and (3.3) 

(3.4) F = F - F = V / P \ . / P \ l p-i p+l p Z~J j l m - 3 - f e l lni-2-5afl 

Hence from (3.4) with p = ±1 (mod 5) , 

m-k* / -vm+Qf F /„ = V JtiCZL , (-D p-i p Z»-/ ) m - 3 - 5a m - < 2 - 5a (mod p) 

a , .,xa 
= ( ) LJ p-7-lto + p-5-l ta (modP) 

IV-KP-D y ^ (H1) (w 
- 2(-1)2 F Z^ N

 P- ' ^ ' ^ p> 
ms5,7(modio) 

|m|<p 
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Finally from (3.3) with p = 2m + 1 

FP 

m=i?7(modio) 
|m|<p 

Thus we have established (1*5), (1*6), and (1.7)* 
Let us now consider a specific example. By (1*1) 

Fi4 = ( ^ ) - ( ^ - ^ g ) + ^ i ) + ( n ) = 1716-715-715+13 + 78 = 377 

By (1.3), 

* 1 4 / ± o - * | 1 3 _ n ^ 13 . 5 " 13 - 1 " 13 + 5 13 + 9 | . 
= 1 + 1 /4 - 1/6 - 1/9 + 1/11 = 1 + 1 0 - 1 1 - 3 + 6 = 3 (mod 13), 

and indeed, 

F14 /13 = 29 = 3 (mod 13) * 

4, GENERALIZATIONS 

In this section we discuss the natural generalization of (1*1) and (1*2)* 
We define 

(4.1) F. (b) = kn(b) - y \ - i f / n \ . 
a^oo ^ [ ( n » " b - ( 2 k + l )a ) ] j 
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Exactly as in Section 29 only now setting 

P = exp (27rt/2k + 1) , 

we obtain 

k 
vb 

3=1 

(4.2) F k (b) = | ~ ^ j ^ (cos (277bj/2k + 1) - cos (27r(b + 1)j/2k + 1)) X 

X (-2 cos (277j/2k + l ) ) n , 

where k > 0, n > 0. 
From (4.2) we may easily ascertain the linear recurrence in n satisfied 

by the F, (b). Consider the sequence of polynomials defined by 
K^n 

f0(x) = 1, fi(x) = x - 1, fk(x) = xfk-i(x) - fk_2(x) . 

Then the roots of f, (x) are 

-2 cos 277j/2k + 1, 1 < j < k 

[ 3; p. 264 ]. Hence from the elementary theory of finite difference (with 

E \ = Vr >' 

we have 

(4.3) fk(E)Fk n(b) = 0 . 

The n-dimensional Fibonacci sequence studied by Raney [5] has as its auxil-
iary polynomial D (x) [5; p. 347] where in our notation 

f„(x) = ( - l ) ^ l ( n - l ) x n D „ ( x - 1 ) . 
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Raney remarks that many of the elementary formulae related to the Fibonacci 
numbers maybe generalized to his sequences, and the same is true of F. (b)« 

j£,n 

Most of these results may be derived from (4.2); but the proofs are clumsy. It 
would be nice to relate these sequences to some set of matrices as Raney has 
done for his sequences;perhaps then easy proofs could be given for analogs of 
Theorems 7 and 8 of Raney1 s paper* 

5. FACTORIZATION OF LARGE NUMBERS 

As is well known the Fibonacci and Lucas numbers are closely related 
to Lucas1 s famous test for the primality of theMersenne numbers 2P - 1. We 
shall derive some similar necessary conditions for the primality of (kp - 1)/ 
k - 1 utilizing some analogs of the Lucas sequence which are related to the 
generalized Fibonacci sequences discussed in Section 48 For example, when 
k = 2, we shall prove the necessity part of Lucas's theorem on the primality 
of 2 q - 1 (with q = 3 (mod 4)) [4; p. 224], When k = 2 and q = 1 (mod 4), 
we shall prove the following resu l t 

Theorem 30 Let r be defined by 
— n J 

r* = 3 ' V i = rn " % • 

If q = 1 (mod 4) and M = 2q - 1 are both primes, then r = 3 (mod M )• 
~1 M. HI 

When k = 3 and q = 1 (mod 6), we have the following theorem,, 
Theorem 4, Let s0 = 1, to = -2, and in general 

s ± = s3 - 3s t - 3; t . = t ? ' + 3 s t + 3 . n+i n n n n+i n n n 

If q = 1 (mod 6) and M = y ( 3 q - 1) are both primes, then 

s = 4 (mod M ) , 

t = -11 (modM ) . 
q q 

Our first object in this section will be the derivation of a general theorem 
which will imply Theorems 3 and 48 
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Let A.(k) dene 
integers* We define 

Let A.(k) denote the set of all ordered j-tuples of the first k positive 

Li d) = V (~2 c o s 27mi / 2 k + D11— (-2 c o s 2OTI- / 2 k + D n 

K,n £—j 3 

where the summation is over all 

toi, • • • • n j ) E A.(k) 

We shall also need the polynomials 

m 

',«-Zfe)°"!i«--!^ 
J=0 

these polynomials have the property that 

cos 2mjS = w (cos /3) . 

Lemma 1, Let p be an odd prime, p = n (mod 2k + 1), 0 < n < 2k. 
Then there exists a rational integer a{k;y,n)9 which depends only on k, j , and 
n and not on the magnitude of p such that 

Lk,(k-i)p+i(j ) s a^r,n) (modp). 
Proof, Define nf to be n if n is even and n + 2k + 1 if n is odd; 

n* = |nf, Then in the ring of integers of Q(-2 cos 27t/2k + 1) 

^ / \ 
(-2 cos 27fj/2k + 1)P = (-2)p2~p+1 Y ^ I +

p
 + J cos 2<7r(2i + l)j/2k + 1 

i=o 

= -2 cos 2?ypj/2k + 1 (mod (p) ) 
s -2 cos 27mj/2k + 1 (mod (p) ) 

5 -2 cos 27m!j/2k + 1 (mod (p) ) , 
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where (p) is the principal ideal generated by p in the ring of integers of 
Q(-2 cos 2?r/2k + 1) and this first equality is from [1; p. 83], Consequently 

( 5 # 1 ) Lk,(k-i)p+i(:i) s ^ (?"2 COS 2 7 m f n i /2k + l)k""1(-2 cos 27mi/2k + 1) • • • 

• • • (-2 cos 2mi?n. /2k + l)k""1(-2 cos 2mi. /2k + 1) 
J 3 (mod (p) ) 

(5.2) = Y ^ (-2wn^ (cos 23111! /2k + l))k""1(-2 cos 2imi/2k + 1)« • • 

• • • (~2w (cos 2im. /2k + l))k"1(-2 cos 2im. /2k + 1) 
n* J J 

(mod (p))* 
We now define a(k;j;n) to be the expression appearing on the right side of 
(5.1) (or, what is the same thing, (5.2)). Now (5.2) shows that a(k;y,n) is a 
symmetric polynomial in cos 2nm/2k + 1, 1 < m < k; since these are the 
roots of f,(-2x) (c. f« Section 4), we see by the symmetric function theorem 
that a(k;j;n) is a rational number. On the 6ther hand, (5.1) shows that 
a(lq j;n) is an integer of the field Q(-2 cos 2w/2k + 1); since the rational inte-
gers are integrally closed in Q(-2 cos 2n/2k + 1), we see that a(k;j;n) must 
be a rational integer. Hence 

Lk,(k-i)p+i(J) s aik; j ; n ) ( m o d ( p ) * 
holds in the ring of integers of Q(-2 cos 2?r/2k + 1). Since this congruence 
involves only, rational integers, it must also hold in Z, the ring of rational 
integers. Thus Lemma 1 is proved. 

Corollary 1. If in Lemma 1, n = 1 or 2k, then 

Lk,(k-l)p+i<J> s Lk,k<J> , C m o d P ) • 

Proof. In (5.1) with n? either 2k or 2k + 2, we have 

Qf(k;j;n) = ] T (-2 cos 2imi /2k + l ) k • • • (-2 cos 2m. /2k + l ) k = Lfe (j). 
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The desired results now follow directly from Lemma 1. 
We now proceed to our main result. 
Theorem 1. Let k > 2 be an integer. Let 

°k, j = V j ^ ' • ' • ' xn> 

be the j elementary symmetric function of x ^ ' - j X ^ . Let g.(yi9 •• • »y^) 
be the polynomial with integral coefficients such that 

<rk|jfcf. •••,4) = 8,H,1.-".°k,k)-

Let 

vk ,o ( j ) = L k , i ® 

and 

vk,n+i<J> = g j ( \ n ( 1 ) ' ^ ' v k , n ( k ) ) ' 

If k* = g. c.d (k - 1, 2k + 1), define m = k*(2k + 1), and let </>(m) = m% 
$(mf) = mff where <fx is Euler?s totient function. 

If q > m and M = (K* - l ) /k - 1 are both primes, then there exist 
integers /3(k;j;i), 1 < i < mff depending only on k and j such that 

^ q ( J ) = £(k;j;n) (modMq) , 

if q = a (mod m"), where aj, ••• ,a .A. ffx constitute a reduced residue class 
system (mod mnK 

Proof. From the definition of L, (j), one easily verifies by induction 

*^at Lfckn® = v k ^ ° 0 n e a * s o m a y v e r i f y ^ a t ^ e r e s i (*ue oi M (mod 2k 
+ 1), say r, is completely determined by the residue of q (mod mfl)« There-
fore if both q > m and M are primes, 

vk,q( j ) = \M® = Lk,(k-i)M + i ^ s a{k; i' r ) ^ ^ M q } • 
T. 
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If we define 

0(k; j ; n) = a(k; j ; r) 

where q = a (mod mff)? then the theorem follows* 
For small values of k we may prove more explicit theorems. 
Theorem 2. (Lucas) Let r be defined by 

ft = 3, r ^ = r2 - 2 . 

If q s 3 (mod 4) and M = 2P - 1 are both primes, then r = 0 (mod M ). 
Proof. In Theorem 1, with k = 2S we find that for n > 0 

v2,n(2) = (-2 cos 2ir/5)2ll(-2 cos 47r/5)2n = (-l)2*1 = 1. 

-Also 

xf + xf = o-2
?i - 2CJ2J2 

Hence 

gi(yi»y2> = y! - 2y2 • 

Thus we see that r = v2jn(1)* 
As in Lemma 1, we have (mod M ) 

r = L M (1) = (-2 cos 4ir/5)(-2 cos 2ir/5) + (-2 cos 8ir/5)(-2cos4ir/5) 
H q 

= 2 (-2 cos 4TT/5)(-2 COS 2TT/5) = - 2 . 

Therefore 

r 2 = r + 2 ^ - 2 + 2 = 0 ( m o d M J . q-i q q ' 

Thus since M was assumed prime, 
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r =F 0 (mod M ) . 

This concludes the proof of Theorem 2. 
Proof of Theorem 3, We proceed exactly as in Theorem 2, except that 

now by Corollary 1 

r q 5 L2,Mq+i<D s H a d ) = 3. 

Proof of Theorem 4. In Theorem 1, with k = 3, we find that for n > 0 

•3,n<3) = (-2 cos 2ir/7)^(-2 cos 4ir/7)^(-2 cos §TT/1)^ = (-l)3 n = - 1 . 

Now 

xf + x | + xl = cr j f l - BaZAaZiZ + 3cr3,3 , 

and thus 

gi(yi.y2»y3) = A - 3yiy2 + 3y3 . 

Also 

X1X2 + xlxf + xfxf = crls2 - 3OJMOS,2<J&,3 + M U » 

and thus 

g2(yi»y2»ys) = yl - 3yiy2y3 + 3yf . 

Thus we see that 

s n = v3fn(l) 

and 

tn = v3,n(2) . 
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Utilizing Corollary 19 we have (mod M ) 

s q = L392Mq+i(l) = L3,s(l) = 4 ; 

tq = L392Mq+i(2) s L3j3(2) = -11 . 

This concludes Theorem 4* 
Theorem 5„ Under the conditions of Theorem 4, with the single change 

that q = 5 (mod 6)9 if both q and M are primes, then 

s s 4 (modM ). 
VI VI 

Proof, Since q = 5 (mod 6), M = 2 (mod 7). Hence by Lemma 1 we 
have (mod M ) 

s 
q 

L3s2Mq+lW = ^ ( " 2 C 0 S 4^ / 7 ) 2 (""2 C 0 S 2 t f l / 7 ) 

3 
= 4 ^ ( 2 cos2 2wj/7 - l)2(-2 cos 2wj/7) 

3 
= y ^ ( ( - 2 cos 2trj/7)2 - 4(-2 cos 2nj/7)8 

j=i +4(-2COS2TTJ/7)) 

= L3?5(l) - 4L3j3(l) + 4L8>i(l) 
= 16 - 16 + 4 = 4 . 

We now consider some numerical examples of the theorems we have 
proved. F i r s t take q = 5, M5 = 121 in Theorem 5. In this case 

n s (mod 121) tn (mod 121) 
0 1 -2 
1 4 -11 
2 72 -8 
3 -6 -59 
4 50 -66 
5 -18 
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Consequently Theorem 5 proves that 121 = |(35 - 1) is not a prime, and in-
deed 121 = l l 2 . 

Next we consider Theorem 4, with q = 7, M7 = 1093. In this case 

n s (mod 1093) t (mod 1093) 
0 1 -2 
1 4 -11 
2 193 -367 
3 -249 -386 
4 -510 -96 
5 -569 -78 
6 -127 -387 
7 4 -11 

Thus we see that 1093 = | ( 3 7 - 1) satisfies the necessity conditions of Theo-
rem 4, and indeed it turns out that 1093 is a prime. 

There appears to be a great number of possibilities for further work on 
the subjects treated in this section. One would hope that Theorem 1 could be 
strengthened to include sufficiency conditions for the primality of (kp - 1)/ 
(k - 1). Possibly the arithmetic of the fields Q(-2 cos (2?r/2k + 1)) would 
yield such results. 

6. RELATED SEQUENCES 

It is possible to exhibit a large number of sums similar to those given in 
(1.1), (1.2), or (4.1). To indicate the possibilities we list three such. 

00 

™ <W» =Z([l(n-b-Ii2k+l>«)] 
Qf=-0tf 

00 . 

(6'2) V = E("lf([|fe-b-(2k+l)2«)] 
a=-oo 
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00 

<6'3) ***** = Jj~»a ([|(n - b - (2k + l)(2n + 1))]) • 

Following the method of Section 2, we find 

k 
( 6 ° 4 ) S ^ n ^ = W+l S ( C 0 S 2 ? r b 3^ k + l ) + cos2irfo +1)j/2k+ 1) X 

j=l X (2 cos 27rj/2k + l ) n ; 

2k 
(6.5)' J k (b) = 2kTI J](costrb(4j + 2k + l)/(4k+2)+coSfr(b + l )X 

3=1 

X (4j + 2k + l) /4k + 2) (-2 sin 2wj/2k + l ) n ; 

k 2 k 

(6.6) K .̂ (b) = f ^ r j ^ (sintrb(4j + 2k + l)/(4k+2) + sintr(b + 1)X 

J=i 

X (4j + 2k + l)/4k + 2) (-2 sin 27rj/2k + l ) n . 

As in Section 4 (c. f. (4.3))9 we may give linear recurrence formulae for the 
above expressions as sequences in n. 

(6.7) (-l)k(E - 2)fk(~E)Gk9n(b) = 0 ; 

(6.8) E~*((E + 2)f^(E) - 2)Jkjn(b) = 0 ; 

(6.9) E_1((E + 2)f|(E) - 2)Kk?n(b) = 0 . 

Equations (6.7) through (6.9) are easily derived from Eqs. (6.4) through (6.6) 
utilizing the fact that the roots of (-l)k(x - 2)ffe(-x) are 2 cos 2irj/(2k+l), 
0 < j < k [3; p. 264] and the fact that the roots of x~*((x + 2)f^(x) - 2) are 
-2 sin 27rj/2k + 1, 1 < j < 2k [3; pp. 267-268}. 
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As is clear from their definitions, all these generalized sequences sat-
isfy congruences similar to (1.3) and (1.4). For example if p is an odd prime, 
p £ 2k + 1, then 

(6.10) K. (0) = 0 (mod p) . 
K,p 

If p is an odd prime, p ^ 2k + 1, p ^ ±1 (mod 4k + 2), then 

(6.11) J, (0) = 0 (mod p) . 
K,p 

If p = (2k + l)m + a is a prime with 0 < a ^ k, m ^ 2, then 

<6 '1 2 ) G k 5 p + c ( 0 ) s Fk,P+c<0) 5 ° ( m o d ?> • 

where 0 ^ c — a - 2. 

If p = (2k + l)m + a is a prime with k < a ^ 2k, m ^ 1, then 

<6 '1 3 ) Gk,p+c( 0 ) ^ F k ,P + c ( 0 ) s O&nodp) . 

where 0 ^ c ^ 2k - 2 - a. Equations (6.10) through (6.14) are proved exactly 
the way (1.3) and (1.4) were. 
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