SOME RESULTS ON FIBONACCI QUATERNIONS

MUTHUL AK SHMI R. IYER
Indian Statistical Institute, Calcutta, India

1. INTRODUCTION

Recently the author derived some results about generalized Fibonacci Numbers [3]. In the present paper our object is to derive relations connecting the Fibonacci Quaternions [1] and Lucas Quaternions, to use a similar terminology, with the Fibonacci Numbers [2] and Lucas Numbers [4] as also the inter-relations between them. In Section 3, we give relations connecting Fibonacci and Lucas Numbers; in Section 4, we derive relations of Fibonacci Quaternions to Fibonacci and Lucas Numbers, and in 5, Lucas Quaternions are connected to Fibonacci and Lucas Numbers. Lastly, in Section 6 are listed the relations existing between Fibonacci and Lucas Quaternions.

2. TERMINOLOGY AND NOTATIONS

Following the terminology of A. F. Horadam [1], we define the nth Fibonacci Quaternion as follows:

$$Q_n = F_n + iF_{n+1} + jF_{n+2} + kF_{n+3}$$

where \textbf{F}_n is the \textbf{n}^{th} Fibonacci Number and i,j,k satisfy the relations of the Quaternion viz:

$$i^2 = j^2 = k^2 = -1$$
, $ij - ji = k$; $jk = -kj = i$; $ki = -ik = j$.

Now on the same lines we can define the $\, {\rm n}^{th} \,$ Lucas Quaternion $\, {\rm T}_{n} \,$ say as

$$T_{n} = L_{n} + iL_{n+1} + jL_{n+2} + kL_{n+3}$$

where L_{n} is the n^{th} Lucas number. Also, we will denote a quantity of the form

$$F_{n} - iF_{n-1} + jF_{n-2} - kF_{n-3}$$

by Q_{n^*} and

$$F_{n} + iF_{n-1} + jF_{n-2} + kF_{n-3}$$

by $Q_{\overline{n}}$. Similar notations hold for T_{n^*} and $T_{\overline{n}}$, that is,

$$L_{n} - iL_{n-1} + jL_{n-2} - kL_{n-3} = T_{n^{*}}$$

and

$$\mathbf{L}_{n} \ + \ i \mathbf{L}_{n-1} \ + \ j \mathbf{L}_{n-2} \ + \ k \mathbf{L}_{n-3} \ = \ \mathbf{T}_{\bar{n}} \; .$$

Now we proceed to derive the relations one by one. All these results are obtained from the definitions of Fibonacci Numbers and Lucas Numbers, given by

$$F_n = \frac{a^n - b^n}{\sqrt{5}}$$
, $L_n = (a^n + b^n)$

for all n, where a and b are the roots of the equation

$$x^2 - x - 1 = 0$$
,

obtained from the Fibonacci and Lucas recurrence relations. The roots are connected by

$$a + b = 1$$
, $a - b = \sqrt{5}$,

and ab = -1.

Consider the following relations:

(1)
$$F_{n+r}L_{n+r} = F_{2n+2r}$$

$$\mathbf{F_{n-r}L_{n-r}} = \mathbf{F_{2n-2r}}$$

Therefore

(3)
$$F_{n+r}L_{n+r} + F_{n-r}L_{n-r} = F_{2n}L_{2r}$$

(4)
$$F_{n+r}L_{n+r} - F_{n-r}L_{n-r} = F_{2r}L_{2n}$$

(5)
$$F_{n+r}L_{n-r} = F_{2n} + (-1)^{n-r}F_{2r}$$

(6)
$$F_{n-r}L_{n+r} = F_{2n} - (-1)^{n-r}F_{2r}$$

Therefore

(7)
$$F_{n+r}L_{n-r} + F_{n-r}L_{n+r} = 2F_{2n}$$

and

(8)
$$F_{n+r}L_{n-r} - F_{n-r}L_{n+r} = 2(-1)^{n-r}F_{2r}$$

(9)
$$F_{n+r}L_n = F_{2n+r} + (-1)^n F_r$$

(10)
$$F_{n}L_{n+r} = F_{2n+r} - (-1)^{n}F_{r}$$

So

(11)
$$F_{n+r}L_n + F_nL_{n+r} = 2F_{2n+r}$$

(12)
$$F_{n+r}L_n - F_nL_{n+r} = 2(-1)^n F_r$$

(13)
$$F_{n+r}L_{n+s} = F_{2n+r+s} + (-1)^{n+s}F_{r-s}$$

(14)
$$F_{n+s}L_{n+r} = F_{2n+r+s} + (-1)^{n+s+1}F_{r-s}$$

(15)
$$F_{n+r}L_{n+s} + F_{n+s}L_{n+r} = 2F_{2n+r+s}$$

(16)
$$F_{n+r}L_{n+s} - F_{n+s}L_{n+r} = 2(-1)^{n+s}F_{r-s}$$

In this section, we give the list of relations connecting the Fibonacci Quaternions to Fibonacci and Lucas Numbers. The simplest one is

(17)
$$Q_{n} - iQ_{n+1} - jQ_{n+2} - kQ_{n+3} = L_{n+3}$$

Consider

(18)
$$Q_{n-1}Q_{n+1} - Q_n^2 = (-1)^n \left[2Q_1 - 3k \right]$$

(19)
$$Q_{n-1}^2 + Q_n^2 = 2Q_{2n-1} - 3L_{2n+2}$$

(20)
$$Q_{n+1}^2 - Q_{n-1}^2 = Q_n T_n = (2Q_{2n} - 3L_{2n+3}) + 2(-1)^{n+1}(Q_0 - 3k)$$

(21)
$$Q_{n-2}Q_{n-1} + Q_nQ_{n+1} = 6F_nQ_{n-1} - 9F_{2n+2} + 2(-1)^{n+1}(Q_{(-1)} - 3k)$$

(22)
$$Q_{n-1}Q_{n+3} - Q_{n+1}^2 = (-1)^n \left[2 + 4i + 3j + k \right]$$

$${\rm (23)} \qquad {\rm Q_{n-1}Q_{n+1} - Q_{n-2}Q_{n+2}} \ = \ {\rm (-1)}^n \bigg[\, {\rm 2T_0 - k} \, \bigg] \, + \, 4 {\rm (-1)}^{n+1} \, \bigg[{\rm Q_0 \, - \, 2k} \, \bigg]$$

(24)
$$Q_{n-3}Q_{n-2} + Q_{n}Q_{n+1} = 4Q_{2n-2} - 6L_{2n+1}$$

(25)
$$Q_{n-1}^2 + Q_{n+1}^2 = 6F_{n+1}Q_{n-1} - 9F_{2n+3} + 2(-1)^nQ_{(-2)}$$

Also the remarkable relation

(26)
$$\frac{Q_{n+r} + (-1)^{r}Q_{n-r}}{Q_{n}} = L_{r}$$

(27)
$$Q_{n+1-r}Q_{n+1+r} - Q_{n+1}^2 = (-1)^{n-r} [F_r^2 T_0 + F_{2r}(Q_0 - 3r)]$$

Now we turn to relations of the form:

(28)
$$Q_{n+r}L_{n+r} = Q_{2n+2r} + (-1)^{n+r}Q_0$$

(29)
$$Q_{n-r}L_{n-r} = Q_{2n-2r} + (-1)^{n+r}Q_0$$

(30)
$$Q_{n+r}L_{n+r} + Q_{n-r}L_{n-r} = Q_{2n}L_{2r} + 2(-1)^{n+r}Q_{0}$$

(31)
$$Q_{n+r}L_{n+r} - Q_{n-r}L_{n-r} = F_{2r}T_{2n}$$

(32)
$$Q_{n+r}L_{n-r} = Q_{2n} + (-1)^{n-r}Q_{2r}$$

(33)
$$Q_{n-r}L_{n+r} = Q_{2n} + (-1)^{n-r+1}Q_{2r}^*$$

(34)
$$Q_{n+r}L_{n-r} + Q_{n-r}L_{n+r} = 2Q_{2n} + (-1)^{n-r}L_{2r}Q_{0}$$

(35)
$$Q_{n+r}L_{n-r} - Q_{n-r}L_{n+r} = (-1)^{n-r}F_{2r}T_{0}$$

(36)
$$Q_{n+r}L_n = Q_{2n+r} + (-1)^nQ_r$$

(37)
$$Q_{n}L_{n+r} = Q_{2n+r} - (-1)^{n}Q_{r}^{*}$$

(38)
$$Q_{n+r}L_n + Q_nL_{n+r} = 2Q_{2n+r} + (-1)^nL_rQ_0$$

(39)
$$Q_{n+r}L_n - Q_nL_{n+r} = (-1)^n F_r T_0$$

(40)
$$Q_{n+r}L_{n+t} = Q_{2n+r+t} + (-1)^{n+t}Q_{r-t}$$

(41)
$$Q_{n+t}L_{n+r} = Q_{2n+r+t} + (-1)^{n+r+1}Q_{r-t}$$

Therefore:

(42)
$$Q_{n+r}L_{n+t} + Q_{n+t}L_{n+r} = 2Q_{2n+r+t} + (-1)^{n+t}L_{r-t}Q_0$$

(43)
$$Q_{n+r}L_{n+t} - Q_{n+t}L_{n+r} = (-1)^{n+t}F_{r-t}T_{0}$$

(44)
$$Q_{n+r}F_{n-r} = \frac{1}{5} \left[T_{2n} - (-1)^{n-r} T_{2r} \right]$$

(45)
$$Q_{n-r}F_{n+r} = \frac{1}{5} \left[T_{2n} - (-1)^{n-r} T_{2r}^{\star} \right]$$

(46)
$$Q_{n+r}F_{n-r} + Q_{n-r}F_{n+r} = \frac{1}{5} \left[2T_{2n} - (-1)^{n-r}L_{2r}T_0 \right]$$

(47)
$$Q_{n+r}F_{n-r} - Q_{n-r}F_{n+r} = (-1)^{n-r+1}F_{2r}Q_0$$

(48)
$$Q_{n+r}F_{n} = \frac{1}{5} \left[T_{2n+r} - (-1)^{n} T_{r} \right]$$

(49)
$$Q_{n}F_{n+r} = \frac{1}{5} \left[T_{2n+r} - (-1)^{n} T_{r}^{\star} \right]$$

(50)
$$Q_{n+r}F_n + Q_nF_{n+r} = \frac{1}{5} \left[2T_{2n+r} - (-1)^n L_r T_0 \right]$$

(51)
$$Q_{n+r}F_n - Q_nF_{n+r} = (-1)^{n+1}F_rQ_0$$

(52)
$$Q_{n+r}F_{n+t} = \frac{1}{5} \left[T_{2n+r+t} - (-1)^{n+t} T_{r-t} \right]$$

(53)
$$Q_{n+t}F_{n+r} = \frac{1}{5} \left[T_{2n+r+t} - (-1)^{n+r+1} T_{\overline{r-t}} \right]$$

(54)
$$Q_{n+r}F_{n+t} + Q_{n+t}F_{n+r} = \frac{1}{5} \left[2T_{2n+r+t} - (-1)^{n+t}L_{r-t}T_0 \right]$$

(55)
$$Q_{n+r}F_{n+t} - Q_{n+t}F_{n+r} = (-1)^{n+t}F_{r-t}Q_0$$

$$(56) \quad Q_{\mathbf{n}+\mathbf{r}}\mathbf{F_{\mathbf{n}-\mathbf{r}}} + (-1)^{\mathbf{r}}\mathbf{Q_{\mathbf{n}-\mathbf{r}}}\mathbf{F_{\mathbf{n}+\mathbf{r}}} = \frac{1}{5}\left[\mathbf{T_{2n}}(\mathbf{1} + (-1)^{\mathbf{r}}) - (-1)^{\mathbf{n}-\mathbf{r}}\mathbf{T_{2r}} - (-1)^{\mathbf{n}}\mathbf{T_{2r}^{\star}}\right]$$

$$(57) \quad Q_{n+r}L_{n-r} + (-1)^{r}Q_{n-r}L_{n+r} = Q_{2n}(1+(-1)^{r}) + (-1)^{n-r}Q_{2r} - (-1)^{n}Q_{2r}^{\star}$$

$$(58) \quad \mathsf{Q}_{n+r}\mathsf{L}_{n+t} + (-1)^{\mathbf{r}}\mathsf{Q}_{n+t}\mathsf{L}_{n+r} = \; \mathsf{Q}_{2n+r+t}(1+(-1)^{\mathbf{r}}) + (-1)^{n+t}\mathsf{Q}_{\mathbf{r}-t} - (-1)^{n+r+t}\mathsf{Q}_{\mathbf{r}-t}^{\star}$$

(59)
$$Q_{n+r}F_{n+t} + (-1)^{r}Q_{n+t}F_{n+r} = \frac{1}{5} \left[T_{2n+r+t}(1 + (-1)^{r}) - (-1)^{n+t}T_{r-t} - (-1)^{n+r+t}T_{r-t}^{\star} \right]$$

In this section we give the results connecting Lucas Quaternions $\,T_n\,$ to Fibonacci and Lucas Numbers. The simplest is:

(60)
$$T_{n} - iT_{n+1} - jT_{n+2} - kT_{n+3} = 15F_{n+3}$$

(61)
$$T_{n+r}F_{n+r} = Q_{2n+2r} - (-1)^{n+r}Q_0$$

(62)
$$T_{n-r}F_{n-r} = Q_{2n-2r} - (-1)^{n+r}Q_0$$

(63)
$$T_{n+r}F_{n+r} + T_{n-r}F_{n-r} = Q_{2n}L_{2r} - 2(-1)^{n+r}Q_{0}$$

(64)
$$T_{n+r}F_{n+r} - T_{n-r}F_{n-r} = F_{2r}T_{2n}$$

(65)
$$T_{n+r}F_{n-r} = Q_{2n} - (-1)^{n-r}Q_{2r}$$

(66)
$$T_{n-r}F_{n+r} = Q_{2n} + (-1)^{n-r}Q_{2r}^{\star}$$

(67)
$$T_{n+r}F_{n-r} + T_{n-r}F_{n+r} = 2Q_{2n} - (-1)^{n-r}L_{2r}Q_{0}$$

(68)
$$T_{n+r}F_{n-r} - T_{n-r}F_{n+r} = (-1)^{n+r+1}F_{2r}T_0$$

(69)
$$T_{n+r}F_{n} = Q_{2n+r} - (-1)^{n}Q_{r}$$

(70)
$$T_{n}F_{n+r} = Q_{2n+r} + (-1)^{n}Q_{r}^{*}$$

(71)
$$T_{n+r}F_n + T_nF_{n+r} = 2Q_{2n+r} - (-1)^nL_rQ_0$$

(72)
$$T_{n+r}F_n - T_nF_{n+r} = (-1)^{n+1}F_rT_0$$

(73)
$$T_{n+r}F_{n+t} = Q_{2n+r+t} - (-1)^{n+t}Q_{r-t}$$

(74)
$$T_{r+t}F_{n+r} = Q_{2n+r+t} + (-1)^{n+r}Q_{\overline{r-t}}$$

So

(75)
$$T_{n+r}F_{n+t} + T_{n+t}F_{n+r} = 2Q_{2n+r+t} - (-1)^{n+t}L_{r-t}Q_0$$

(76)
$$T_{n+r}F_{n+t} - T_{n+t}F_{n+r} = (-1)^{n+t+1}F_{r-t}T_0$$

(77)
$$T_{n+r}L_{n-r} = T_{2n} + (-1)^{n-r}T_{2r}$$

(78)
$$T_{n-r}L_{n+r} = T_{2n} + (-1)^{n-r}T_{2r}^{\star}$$

(79)
$$T_{n+r}L_{n-r} + T_{n-r}L_{n+r} = 2T_{2n} + (-1)^{n-r}L_{2r}T_{0}$$

(80)
$$T_{n+r}L_{n-r} - T_{n-r}L_{n+r} = (-1)^{n-r}5F_{2r}Q_{0}$$

(81)
$$T_{n+r}L_n = T_{2n+r} + (-1)^n T_r$$

(82)
$$T_{n}L_{n+r} = T_{2n+r} + (-1)^{n}T_{r}^{*}$$

(83)
$$T_{n+r}L_{n} + T_{n}L_{n+r} = 2T_{2n+r} + (-1)^{n}L_{r}T_{0}$$

(84)
$$T_{n+r}L_n - T_nL_{n+r} = (-1)^n 5F_rQ_0$$

(85)
$$T_{n+r}L_{n+t} = T_{2n+r+t} + (-1)^{n+t}T_{r-t}$$

(86)
$$T_{n+t}L_{n+r} = T_{2n+r+t} + (-1)^{n+r+1}T_{r-t}$$

(87)
$$T_{n+r}L_{n+t} + T_{n+t}L_{n+r} = 2T_{2n+r+t} + (-1)^{n+t}L_{r-t}T_{0}$$

(88)
$$T_{n+r}L_{n+t} - T_{n+t}L_{n+r} = (-1)^{n+t+1} 5F_{r-t}Q_0$$

(89)
$$T_{n+r}L_{n-r} + (-1)^{r}T_{n-r}L_{n+r} = T_{2n}(1 + (-1)^{r}) + (-1)^{n-r}T_{2r} - (-1)^{n}T_{2r}^{\star}$$

(90)
$$T_{n+r}F_{n-r} + (-1)^{r}T_{n-r}F_{n+r} = \frac{1}{5} \left[Q_{2n}(1 + (-1)^{r}) - (-1)^{n-r}Q_{2r} + (-1)^{n}Q_{2r}^{*} \right]$$

(91)
$$T_{n+r}F_{n+t} + (-1)^{r}T_{n+t}F_{n+r} = \frac{1}{5} \left[Q_{2n+r+t}(1 + (-1)^{r}) - (-1)^{n+t}Q_{r-t} + (-1)^{n+r+t}Q_{r-t}^{\star} \right]$$

(92)
$$T_{n+r}L_{n+t} + (-1)^{r}T_{n+t}L_{n+r} = T_{2n+r+t}(1 + (-1)^{r}) + (-1)^{n+t}T_{r-t} + (-1)^{n+r+t}T_{r-t}^{\star}$$

Lastly, in this section we obtain the inter-relations between the Fibonacci and Lucas Quaternions

(93)
$$Q_n L_n + T_n F_n = 2Q_{2n}$$

(94)
$$Q_{n}L_{n} - T_{n}F_{n} = 2(-1)^{n}Q_{0}$$

(95)
$$Q_n + T_n = 2Q_{n+1}$$

(96)
$$T_n - Q_n = 2Q_{n-1}$$

(97)
$$T_n^2 + Q_n^2 = 6 \left[2F_n Q_n - 3F_{2n+3} \right] + 4(-1)^n T_0$$

(98)
$$T_n^2 - Q_n^2 = 4 \left[2F_n Q_n - 3F_{2n+3} + (-1)^n T_0 \right]$$

(99)
$$T_{n}Q_{n} + T_{n-1}Q_{n-1} = 2T_{2n-1} - 15F_{2n+2}$$

(100)
$$T_{n}Q_{n} - T_{n-1}Q_{n-1} = 2Q_{2n-1} - 3L_{2n+2} + 4(-1)^{n}(Q_{0} - 3k)$$

(101)
$$T_{n}Q_{n+1} - T_{n+1}Q_{n} = 2(-1)^{n} \left[2 Q_{1} - 3k \right]$$

(102)
$$T_{n+r}Q_{n+s} - T_{n+s}Q_{n+r} = 2(-1)^{n+s+1}F_{r-s}T_0$$

REFERENCES

- 1. A. F. Horadam, "Complex Fibonacci Numbers and Fibonacci Quaternions," Amer. Math. Monthly, 70, 1963, pp. 289-291.
- 2. A. F. Horadam, "A Generalized Fibonacci Sequence," Amer. Math. Monthly, 68, 1961, pp. 455-459.
- 3. Muthulakshmi R. Iyer, 'Identities Involving Generalized Fibonacci Numbers,' the Fibonacci Quarterly, Vol. 7, No. 1 (Feb. 1969), pp. 66-72.
- 4. E. Lucas, Theorie des Numbers, Paris, 1961.

(Continued from p. 200.)

SOLUTIONS TO PROBLEMS

1. For any modulus m, there are m possible residues $(0,1,2,\cdots,m-1)$. Successive pairs may come in m^2 ways. Two successive residues determine all residues thereafter. Now in an infinite sequence of residues there is bound to be repetition and hence periodicity.

Since m divides T_{0} , it must by reason of periodicity divide an infinity of members of the sequence.

2. n = mk, where m and k are odd. V_n can be written

$$V_n = (r^m)^k + (s^m)^k ,$$

which is divisible by $V_m = r^m + s^m$.

3. $r = 2 + 2i \sqrt{2}$, $s = 2 - 2i \sqrt{2}$.

$$T_{n} = \left(\frac{2 - 3i\sqrt{2}}{16}\right)r^{n} + \left(\frac{2 + 3i\sqrt{2}}{16}\right)s^{n}$$
.

4. The auxiliary equation is $(x - 1)^2 = 0$, so that T_n has the form

$$T_n = An \times 1^n + B \times 1^n = An + B$$
.

5.
$$T_n = 2^n \left[\left(\frac{b - 2a}{4} \right) n + \frac{4a - b}{4} \right]$$

(Continued on p. 224.)

* * * *