ON DETERMINANTS INVOLVING GENERALIZED FIBONACCI NUMBERS
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Holkar Science College, Indore, India

In this note we shall evaluate some determinants whose elements are the
Generalized Fibonacci numbers, Tn’ defined by the relations:

Ty =a, Tp=5b, T =T, +T .

We can express

where «o,B8 are the roots of the equation X2_-X-1=0, and C and D are
constants. The Fibonacci numbers, F» are obtained by taking a =b.= 1,
and the Lucas numbers, Ln’ by taking a =1, b = 3.

We shall make use of the following well known identities:

@) F_ = (-1)“‘11?n ,

(i1) Tm+n = TmFm+1 * Tm—an ’

i) Th+1 = Tnoa = 2Tapp * PTop g
(iv) T T, - T T, = D™F D,
and shall also use the formulae,

) Trtrtner ¥ (—l)rﬂTan = Thanart e

The truth of this formulae canbe established, either by induction over r,

or by substituting the values of Fn and Tn in terms of o and B.

1. THIRD-ORDER DETERMINANT
We shall show that
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Tp Tp+m Tp+m+n
.1 Tq Tq+m Tq+m+n =0
Ty Trm  Trimm

for all integers p, q, r, m, and n. Using (ii), we can write

=T F

T tmn kimPn+1 ¥ Tkam-1F

n’ (k = p,q,r)

hence the determinant on the left-hand side can be written as

Tp Tp+m Tp+m Tp Tp+m Tp+m- 1
Fn+1 Tq Tq+1n Tq+m + Fn Tq Tq+m Tq+m-1
i r+m r+m Tr Tr+m Tr+m— 1

Obviously the first determinant vanishes. The second, on subtracting

the elements of the 3rd column from those of the 2nd, reduces to

Tp+m—2 Tp+m—1

F
n

H 3 A4

p
q Tq+m—2 Tq+m—1
r T

r+m-2 Tr+m—1

Now on subtracting the elements of the 2nd column from the 3rd, we
obtain

Tp Tp+m-2 Tp+m-3
Fn Tq Tq+m—2 Tq+m-3

r Tr+m~2 Tr+m—3

Thus alternately subtracting the 2nd and the 3rd columns from one an-
other, the process can be continued to reduce the suffixes. At a certain stage,
if m is even, 1st and 2nd columns will become identical; and if m is odd, 1st
and 3rd columns will become identical. Hence for every value of m, even or
odd, the determinant vanishes. ‘
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2. EVALUATION OF THE DETERMINANT

We shall now evaluate the determinant,

Tp+k Tp+m+k Tp+m+n+
A= Tq+k Tq+m+k Tq+m+n+ s
Tr +k rI‘r+m +k Tr+m+n

where k is an arbitrary constant, and P, 94, ¥ m, and n are integers.
On writing the determinant as the sum of eight determinants, and using
(1.1) and the property that a determinant vanishes if two columns are identi-

cal, we obtain

T T k
p p+m
A = Tq g3m k| + |e + ,
Tr r+Hm k
T T 1
p p-1
= K-Fm Tq Tq—l 1 + +
T T 1
r r-1

The first determinant by asing (iv) can be written as
r-1 p-1 q-1
= D-K-F -1 F + (=1 F + (-1 F .
m[( YTt PR+ (D) p_q}
Hence

- . _ 14 _ (_1\P _1\P
(2.1) A =D KL{( 1) Fr—q' (-1) Fr_p + ( 1)“Fq_p1><
x {Fm - Fm+n * (_l)anJ

3. FOURTH-ORDER DETERMINANTS

We shall now evaluate the determinant,

Tn+3 Tn+2. Tn+1 Tn

A = Tn+2 Tn+3 Tn Tn+1
Tn+1 Tn Tn+3 Tn+2
T T T T

n n+1 n+2 n+3 |
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It can be easily shown that the determinant,

Lo oTw
o up g

Hence we obtain

- 2
A = [(Tn+3 + Tn+2) - (T

(3.1)

on using (iii).

T o0
T O

={@+D?- (+d?][@-Db-(-d].

2
n+l + Tn)] X

X [(Tn+3 - Tn+2.)2 - (Tn+1 - Tn)2]

2 _ M2
(Tn+1 Tn-1 )

) @Typ 5 * PTopg) i

2 2 .
(Tn-1-4 - Tn+2)
@T + bT

2n+4 2n+5

4., EVALUATING THE CIRCULANT

We now evaluate the circulant,

n n+k n+(m-1)k
Thtm-pk T " Thm-2)k
Tn+k Tn+2k Tn
Let w be any one of the m numbers
L. 2
W, = cos-‘?'rﬁﬂ-+1sm—rflﬂ- , (*r=1,2,3,**+,m)
so that W = 1, and
Sy EW1+W2+W3+"'+Wm=0
Sz = W3 Wy + L =0
m m+l .
S, = WiWawzwy W = ED-EDT = (1)

[Oct.
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Hence we get
m

(4.1) ll(y-WrZ)=ym—zm.
=1

Therefore as discussed in [8] ,

m
- e o0 m_l
A= | (Tn + WrTn-l-k + + W_r Tn+(m—1)k)
m r
ca(1 - Wmamk) D,Bn(l - wmﬁmk)
= r + L
k
- ] 1 - wra 1- wrﬁk
m e -1 oS - )
4.2) _ n n+mk r n-k n+(m-1)k
=1 | (1 -w.a )(l—wr )

m mk m
R T U e )

@ - ™) @ - g

m mk
_ (Tn B Tn+mk) - 1) (Tn—k - Tn+(m—1)k

L+ (—1)mk - Lok

)m

5. EACH ELEMENT IS THE PRODUCT OF TWO NUMBERS
We shall evaluate

Foo " Thn Frip  ° Tmendp Friprg  * Tmtntpig
A= P Thinr Fn+]'_‘+p ) Tm+n+r+p Fn+r+p+q ) Tm+n+r+p+q ’
Fn+s ) T1n+n+s Fn+s+p ’ Tm+n+s+p Fn+s+p+q ) Tm+n+s+p+q
and shall show that | A | is independent of n.
On using (v), we can write

p+l1 =
n+me+n+p + 1 ¥ Tmn Fme+.?.n+p
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Hence multiplying 1st column by (—1)p+1, (_1)p+q+1, and adding respectively
to the 2nd and 3rd columns, we obtain

Fn ) Tm+n Tm+2n+p Tm+2n+p+q

>
{

= FoF o Foer " Tmomsr  Tme2nt2rp T m+2n+arip+g

{Fnrs " Tmints Tmi2nt2sip L m+2n+2s+phq

Fn Tm+n T m-+2n+p Tm+2n+p— 1
- Fpr+qu Fn+rTm+n+r Tm+2n+2r+p Tm+2n+2r+p_1
F ]

nisTmmts Tme2nt2stp L mt2n+2s+p-l
on using (ii).

Now alternately subtracting the 3rd and 2nd columns from one another,
we can write

FooooTym  To T
A = FquFp +q(_1)m+p Foor " Tminer  Tor Tors1
Fois* Tmnts T2s  Tassl
- FquFP“‘q(_Dmﬂ) ) D[FnTm+nF2s-2r - Fn+1t'TIJ£1+n+I'FZS "
+ Fn+sTm+n+sF2r]

on using (iv).
Now on expressing the numbers in terms of ¢ and B, we can write

_ 1
Fois Tmints T2r = 5 [Tm+2n+25+2r - Thianszs-2r *

n+s
DT ey - Tm+2r)]

Hence we have

G1) A =iFFF _(1)P.p [(T

+
57 p q piy )

m+2r-2s Thhes-2r

s r
DT o - Triar) - DTy 9s - Tm+25)]

Also it is obvious that | Al is independent of n.
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6. ONCE AGAIN THE FOURTH ORDER

We shall now show that

Fpr+m Fp+an+m+a Fp+pr+:m+b Fp+ch+m-Fc
6.1) A = FqTq+m F01+:a.r1‘<31+111-l<a. Fq+qu+m+b Fq+ch+m+c =0,
FrTr+m Fr+aTr+m+a Fr+bT1-+m+b Fr+¢Tr+m+c
Fs’I‘s+.m Fs+aTs+m+a Fs+st+m+lo F:e:+cTs+nr1+c‘
for all integers p, 9, vy, 8, m, a, b, and c.
Multiplying 1st column by 1%, 1)°", 1)°™! and adding to the

2nd, 3rd, and 4th columns, respectively; and using the formula (v), the deter-

minant reduces to

Fpr+m T2p+m+a T2p+m+b T2p+m+c
Fa' Fb' Fc' FqTq+m T2q+m+a T2q+m+b T2«:;[+m+c
FrT r+Hm T2r+m+a T,‘Z.r+m+b T2r+m+c
FsTs+m T2s+m+a T2s+m+b T25+m+c;

Expanding along the ist column and using the result (1.1), the determi-

nant vanishes. This can be generalized for the nth order determinants.

7. PARTICULAR CASES

A, Letustake a =b =1, then Tn = Fn and D = -1,
(@) On putting m = n in (1.1), we get

Fp Fp+n Fp+2n

F =0

q Fq+n Fq+2n
Fr Fr+n Fr+2n

— a problem suggested by Vladimir Ivanoff [ 4].
(ii) Ontaking p=a, q=a+3d, r=a+6d, m =n =4d in (1.1),

we get
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F F F

a a+d a+2d
Foa Faua Fassal = O
Fa+6d Fa+7d Fa+8d

~ a problem suggested by Raphael Finkelstein [7].
(iii) On taking p=n, q =n+1, r=n+2, m =n =1 in (2.1),
we get

F +k F +k F + k

n n+1 n+2
En+1 +k Fn+2 +k Fn+3 +k
.1 Frig Tk Fpg+tk Fo,+k
= D ke [EDP - C)M DR
X [Fy - Fy - Fy]
- k- (_1)n+1
— a problem suggested by Brother U. Alfred [2].
(iv) We obtain from (3.1)
Fn+3 Fn+2 Fn+1 Fn
Fn+2 Fn+3 Fn Fn+1 - F _—
Forr Fn Foaz Foa 206 2n
Foo Fon Foie Foas
— a problem suggested by George Ledin [5].
(v) We obtain from (4.1)
Fn Fn+k e Fn+(m—1)k
n+(m-1)k Fn . Fn+(m-2)k
n+k Fn+2k Fn
m mk m
_ (Fn Fn+mk) - 1) (Fn—k - Fn+(m—1)k)

mk
1 - Lmk + (-1)

— a problem suggested by L. Carlitz [6].
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(vi) On taking m = 0 in (5.1), we get

2 2 2
Ii‘n Fn+p Fn+p-|-q
F2 2 2

n+r Fn+r+p Fn+r+p+q

2 2 2
Fn+s Fn+s+p Fn+s+p-lq

2. p.7. _1yip s T
5t B oECE L CDTPIE, o+ (DR, - (DTF, ]

on using result ().
(vi)-(@) On substituting p=q=1, r =1, s =2, we get

F; F§1+1 F§1+2

Fiwr Tnaz Tros

F31+2 Ff1+3 F ?1+4:
=2 ("M@, + Fp o+ FyY
- 2(_1)n+1

— a problem suggested by Brother U. Alfred [1].
(vi)-() On substituting p=q =2, r =2, s =4, we get

Fi T Fhu

F;11+2 F§1+4 F§1+6

Fia TFrie  Fras
=2.3.()".@+3-2)
= 18 (_1)n+1

— a problem suggested by Brother U. Alfred [3].
(vii) On taking m = 1 in (5.1), we obtain
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FnFn+1 Fn+p Fn+p+1 Fn+p+q Fn+p+q+1
Fn+an+r+1 Fn+r+p Fn+r+p+1 Fn+r+p-lq Fn+r-|-p+q+1
Fn+an+s+1 Fn+s+p Fn+s+p+1 Fn+s+p+q Fn+s+p+q+1
=1lr .7 . np
-5 Fr Fq Fp+q("1) [(FZr-2s+1 - F1+23-2r) +

+ CDPF) 5 - Fron) - CDEE

1-2s ~

1+2r
= %FquFerq ('1)n+p['(F2s-zr+1 - Fogap-1) ¥
* (_1)S+1(F2r+1 - Fora) * V'@
= 5 GO E R R (Fag gy + CD°Fy, - (DT E, ]

(vii)-(a) Ontaking p=q =r =1, and s = 2, we have

FnFn+1 Fn+1Fn+2 Fn+2Fn+3
Fn+1Fn+2 Fn+2Fn+3 Fn+3Fn+4c
F F

n+2" n+3 Fn+3Fn+4 Fn-i-4Fn+5

2 D" @E; + Fy + )

n*

]

(viii) On taking m

0 in (6.1), we get

Ff) Flzp+a F';Za+b F;Z)+c
Fa Féﬁa F(21+b F<21+c =0
Mor, Ty ol
Fi‘. Fzs—la Ffe,+b Fi*,+c

for all integers p, 9, r, s, 2, b, and c.

B. On taking a =1, b = 3, we have TnELn and D = 5,
(i) On taking p=a, q =a+3d, r =a +6d, m =n =d in (1.1),

we get

[Oct.

F

2s+1 ~ F2s-1)]

1+2s )
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La La+d I"a+2d
La+sd Tawaa Tatsa| = ©
I"a+6d La+7d I"a+8d

— a problem supgested by Raphael Finkelstein [7].

(ii) We obtain from (2.1) that

Lp + k Lp_'_m + k Lp+n

q+m + k Lq+n

+ k Lr+n + k

+ k
L. +k L + k
q

Lr + k Lr+m

F +k F + k

P p+Hm
= -5 . Fq+k Fq+m+k
F +k F + k

T r+m

for all integers p, 4, r, m, and n.
(iii) We obtain from (3.1)

329

pin
g+n

r+n

Ln+3 Ln+2 Ln+1 I"n
Ln+2 Ln+3 Ln Ln+1
I"n+1 Ln Ln+3 I"n+2
Ln I“n+1 Ln+2 Ln+3
= Wonsg + onys)Top g * 3oy )
=25 F2n+6 F2n
Fn+3 Fn+2 Fn+1 Fn
n+2 n+3 Fn Fn+1
= 2p F F F
n+l n n+3 n+2
Fn Fn+1 Fn+2 Fn+3
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(iv) We obtain from (4.1)

Oct. 1969

m
ok = Pnttm-1)k’

Ly Dpae """ Ln+(1n-1)k
Ln+(m-1)k Ln h Ln+(m-2)k
n+k Lok = I
T T e o Vi
) 1oL + )™

— a problem suggested by L. Carlitz [6].
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