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0. By the Perron matrices P. in an n-dimensional algorithm of the 
Jacobi-Perron type [1] we understand the analogue to the 2-dimensional 
matrices 

Pk-i \ 

built up from two consecutive "convergents" 

of an ordinary continued fraction. 
As explained in detail in Chapter I of a previous joint paper of ours [2] 

these n X n matrices P are defined recurrently by 

P k = P k - 1 A (k = 0 , 1 , ' • • ) , 

with the initial condition 

P - = I (n-rowed unit matrix) , 

where the matrices 

• 0 a Ok 
Llk 

1 a n- l ,k 
394 

(k = 0, ! , - • • ) , 
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a re built up from the "partial quotients" 

a 0k = l j a l k s ' " V l 5 

In the algorithmj which in the special case n = 2 of ordinary continued frac-
tions reduce essentially to only one a.,, in each step. 

From this recurrent definition it follows that the Perron matrices P 
are built up from an infinite sequence of n-termed columns w .. in the form 

J£ — JL 

p k - i = * W " ' * k - i > • 

satisfying the recurrency formulae 

<°-D a 0 k V n * - + V l , k * k - 1 (k>°> > 

with the initial condition that 

-n u -1 n-1 

a re the columns of the n-rowed unit matrix I. 
In the present paper the entries of the Perron matrices P. n shall be 

(v) denoted by pj_ , fvS where the super- and subscripts v = 0,* • • ,n - 1 and 

v% = 0,* • • 9n - 1 indicate the lines and columns, respectively: 

•*k-l v* columns \ ' 

Thus the recurrency formulae (0.1) with the initial conditions (0.2) become 

(0.3) 

with 

(v) y^1 (V) ( k > 0 \ 
p k " ^ V p k - (n-^) \ v = 0, • • • , n - 1 / 

(0 4) D M = e M - I1 for V = V'\ 
( U a 4 ; P - ( n -^ ) V ~ \0 for v £ V*) 

(entries of the unit matrix I) . 
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In Perron 's original paper [2] these p would be the A 
We shall consider only purely periodical algorithms. Let I be the 

length of the period. Then in the recurrency formulae (0.3) there are only 4 
different n-termed coefficient sets a t (v1 = 0 , ' • • ,n - 1), which recur 
periodically. In our first, purely algebraic part these I sets will be con-
sidered as algebraically independent indeterminates and denoted by a ^ (\ = 
0,«« • , £ - 1). For the sake of algebraic generality and formal symmetry we 
include in this stipulation also the coefficients &$ which in the actual algo-
rithm are throughout equal to 1. 

For purely periodical algorithms, the infinite sequence of recurrency 
formulae (0.3) reduces to a finite system 

n-1 
(o-5) PS* - E A W M - ) ix=0'- • • •'-1 

i/»=0 

k 0 
• •• I 

of i linear recurrencies with the n linearly independent initial conditions 
(0.4). 

We shall chiefly be concerned with the special case of period length t = 
1, where there remains only one single linear recurrency 

£4 / \ 
/n a\ W > r » I k > 0 \ 
(°-6> Pk - fa V * W ^ ) (v = 0,- r . , n . x J 

with the n linearly independent initial conditions (0.4). In this case we shall 
obtain the following simple explicit expressions for the entries p^ of the 
Perron matrices P^. (last column): 

(0.7) 
k<""''kn-i^ ° 

p k L(ko . - . . , k 1)=k+(n-i') ( k k
n M 

k 0 , - - - , k ° , > 0 \ K ° ' ' n - l / 

k n - l / k > 0 \ 
n - l I v=0,--- , n - l J 

k 0 + - - - + k
v
 k

0 

*<> + ••• + V i a° 

with summation restricted by the linear form 
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(0.8) L(k0, ••• , k ^ ) = nk0 + (n - l)ki + ••• + l k ^ 

in the summation variables k0,» • • , k n _ i , and with the polynomial coefficients 

(0.9) 
ko + . . . + kn__1\ (k0 + • • • + k n _ 1 ) ! 
k°' "' kn-l / = k°! •"• V l 1 " 

The procedure by which we reach our aim (0.7) is the very old method 
of Euler, viz. , to translate the recurrency formula (0.6) for the sequences 

(v) 
p^ into algebraic expressions for the generating functions 

>(l/)<x) = E P^xk 
y A {v = 0, • • - , n - 1) 

k>0 K 

and to determine the power series coefficients p* from those algebraic 
expressions. 

In the general case of arbitrary period length i we shall show that the 
same object can be achieved in principle. The explicit formulae, however, 
would be so complicated that one can hardly expect to write them down in ex-
tenso, but for simpler special cases. As an example, we shall carry through 
in extenso the very special case i = 2 with n = 2, i. e. , the case of purely 
periodic ordinary continued fractions with period length 2. 

There i s , however, a special case of a more general type in which we 
can obtain as definite a result as (0.7). Amongst the numerous periodic algo-
rithms, discovered by the first author in previous papers*, a particular period 
structure prevails, viz., of length ^ = n and with the following specialization 
of the coefficients in (0.5)s 

(0.10) a ™ = t n a ^ (A,z/J = 0, . . . f n - 1) , 

where 

See the complete list of references in [ 3] , 
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n ' 1 for X + V* > n 

is the so-called "number to be carried over" in the addition of the n-adic digits 
A,^f. In this i m p o r t a n t case we shall derive from (0.7) the following 
generalization: 

» _ r i ^ *YJ 
L(k0, . . . ,kn_1)=k+(n-i ' ) 

(0.12) p £ ' = t 

/ k 0 + " - + k n - l \ k 0 + ' - - +kv V 

\k0> ' V l / k 0 + - - + k n - l 

V l k0 kn- l lv n
 k>° , ) . 

a 0 " ° a n - l \ v = ° . • • • » n - l / 
kQ+- • • +k._ 

We shall come back to another significance of this case in our second 
chapter. 

CHAPTER I: ALGEBRAIC FOUNDATIONS 

1. We begin with considering the special case of period length 1=1. 
To the recurrency formula (0.6), viz. , 

n-1 

with the initial conditions (0,4), viz. , 

(1.2) P X - I / I ) = ew {V>V% = °>"-> n " D > 

we let correspond the characteristic polynomial 

n-1 

= F(x) = 1 - J^ V ^ ' 
l/f=0 

and the n generating functions 
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(V) (v). . y * (v) k 
pv = pv '(x) = £^ pi x 

399 

k>0 K 

Now 

V X p ~ 4 - ( V p k X 
k>0 

V * (u) k 
= k » a^-<*-v>) X 

_ V * (i/) k 
" ¥ ? 6 I / , P k - ( n - ^ ) X 

V " (i>) k 

- A-* V P k - ( n -k>0 - — - ^ ^ 

l a ^ x for i" < # 

) for v* > v 

the latter because the summation condition 0 < k < (n - V) - 1 is equivalent 
to -(n - î T) < k - (n-i>!) < - 1 , so that the initial conditions (1.2) are applicable. 

Summation over uT then yields 

k>o\i/»=o / 

v 

Here the negative terms on the left and right are equal to each other on account 
of the recurrency formula (1.1). This gives the algebraic expressions 
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(V) A{P) ... .«/) 
p^ = _ ^ W 1th Av 

(1.3) ^ 
(l°(x) = ^ V ^ " ^ (l/ = ° ' 8 - e ' n " X> » 

I"=0 
Av 

(I/) 
for the generating functions P . 

2. In order to obtain explicit expressions for the recurrent sequences 
(v) p , , we have to develop the rational functions (1.3) into power series in x. 

The power series for l / F is obtained easily from the geometrical series: 

n - l • " 

k>oWt=0 
a ^ x 

)...TJh.1>o\V ••••Vi/ (2.1) k 0 ' 

k0 k n - l n k o + ( n - 1 ) k l + - " + l k n - l 
x ao - V i x 

k>0 \LW=k\ k 0 ' •••• k n - l / ° n - 1 , L>0\] 

with the linear form 

(2.2) L(sm) = nk0 + (n - 1 ) ^ + • • • + l k ^ 

in the summation variable vector 

n = ^ ' • " • k n - l ) • 

In what follows the summation variables k0s- • • 9kn_i are throughout silently 
supposed to be 0. The solutions U of L(9$ = k correspond to the partitions 
of k into summands from !,• • • ,n; their number p ,, , is well known. 
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In order to obtain from (2.1) the power series for the rational functions 
p in (1.3), we have to multiply by the single terms a x ~ of the poly-
nomials A in the numerator and then sum up over ^f. Multiplication by one 
of these terms and subsequent transformation of the summation yields in the 
first place 

a I /» x 

F -L{z(kr:::kr) 
k>0\L(3J i )=kW ' V l / 

k 0 1V»+1 k n - l \ W-V) X a Q . -• zv, - - - a ^ Ix 

= E l E /k0 + " ° + k n - l \ 
k>oyL(sK)=k-(v-w)\ko! ;*'• V i z 

k0 k ,+1 ao 

In order to simplify the subsequent summation over 1" we have here formally 
admitted terms with L(ko9' • • 9kn_^) < 0, which actually vanish because the 
summation condition is empty. Summation over v* then yields the development 

k>0 \ i/'=0 L(3K)=k- (v-v*) V k 0 ' * " ' n-1 / 

kQ k^.+l 
X ao ' " °v* 

for the generating functions, and thus the explicit expressions 

p" = E E ( k , .... kn J 
( 2 t 3 ) Vt=0 L(9K)=k-(^-^) • ° ' 

k0 V 1 kn-l 
X aQ . . . a,,, ••• a n - 1 , 

for the recurrent sequences in question. 
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3, As a last step, the sum (2.3) of polynomials in a0," • • , a n . ^ can be 
put into canonical form, i .e . , represented as a single polynomial in a0,a • • , 
a -. This is achieved by a further transformation of summation which, in its n-1 J 

turn, allows to reverse the order of the two summations. 
The transformation, leading to this, is 

(3.1) ky, - ^ k y , - 1 . 

It is true that by it the silent summation condition k^f > 0 is transformed 
into k^ > 1. However here , too, after the transformation, the summation 
may again be extended formally over all k » > 0, because the polynomial co-
efficients with a negative term in the "denominator" vanish, if only the sum of 
all terms in the "numerator" is non-negative. The truth of this assertion is 
easily seen by expressing the factorials in the definition (0.9) of the polynomial 
coefficients as values of the Gamma-function and observing that this function 
has no zeros at all , and has poles only at 0, - 1 , -2,« • • . That the "numerator" 
here is non-negative, is seen as follows. Under the transformation (3.1), 
according to the definition (0.8), one has 

L M - > L M - (n - v<) 

and hence 

^ k0 K* kn-l 
X a

0 ° , B V t " 8 V l * 

Here the sum of all terms in the "numerator" is surely non-negative, because 
L W = k + (n - v) > k + 1 > 1 and hence not all k0,« • • >kn_i vanish. 

Since by this transformation the inner summation condition in (3.2) has 
become independent of the outer summation variable vf, the order of the two 
summations may now be reversed: 
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pP- £ (E (£:::::%:?::".+fc))* 
L(3K)=k+(n-y) \ i;i=0 n _ 1 ' 

(3.3) k0 k ., 
u n-1 

X a0 • • • a n l Thus the polynomial (2.3) has already been put into canonical form. But, 
moreover, it is even possible to consummate the inner sum in (3.3). For, by 
definition 

/ko + " « + (kj,, - 1) + ••• + k n _ 1 \ (k0 + --- + (ky, - 1) + ••• + k n _ l ) I 

V k o , - " ,k„ , - 1 . •'•' k n _ J = ko! •" (V -D! ••• V J ! 

/Tk0 + . . . + k n _ 1 ^ k„, 
= Uo . • • • . kn_Jk0H-...+kn_1 WS0 f° r K* = 0) ' 

and hence 

(3.4) 

» / k o + . . . + (ky, - 1) + . . - - f k ^ v 
^ \k0 , ••• . k - 1 , ••• , k J 
;t=0 

= /ko + ••• + k
n - i \ ko + " • + k v 

\k0 , ••• . ^ J k o t . . . +kn_1 

Thus (3.3) yields our first chief result 

/ k 0 + --- + k n _ 1 \ 

• " + k u k0 k
n - l / k > 0 \ 

• • + kQ_1
 a° * " V l » \v = 0 , - - - , n - 1 / 

P ^ = Zv U . . . . . t " " j X 
L(9tt)=k+(n-z/) 

(3.5) 
k0 + 

xkrr-

as announced in (0.7). 
We remark that (3.5), conveniently interpreted, holds even for k > -n, 

i8 e. j including the initial values corresponding to k = -(n - V) {v* = 0,» • • , 
n - 1 ) . For in these cases the summation condition L@tt) = P1 - v has no non-
negative solutions if v% < v9 only one such solution, viz. , k0,» • • ,k - = 0, 
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if vi = v9 and only such solutions with k0,«« • ,k^ = 0 if V1 > v. Hence for 
V* < v the sum is 0 by the usual convention for empty sums, for W > v it is 
also zero with regard to the factor 

k0 + - " + k n - l ' 

and for V* = V it is 1 if this factor of the indeterminate form 0/0 is under-
stood as 1. 

It is furthermore perhaps not useless to remark that for the first initial 
condition (1.2), i. e. , for v = 0 this result can also be written in the simpler 
form 

(3.6) P k = 2 - l k n , . . . , k J a 0 • • ' a l - V l ( k ^ 0 ) 

as is already clear from the intermediate result (2.3)0 

4. Since operating with polynomial coefficients, and in particular with 
their fundamental recurrency property 

U* v/k0 + " ' + ( V - 1 ) + - - + k n - A / k 0 + - ' + k n - l \ 

(special case v - n - 1 of (3.4)), is not so familiar and handy as in the special 
case n = 2 of binomial coefficients, we attach here the following simple r e -
duction of the former to the latter. 

From the definition (0.9) one has 

/ V " - + k n - l \ _(k0 + ~- + M X 

Vko • ••• • V i / \ko • ••• • V 
/(k0 + . . . + v +km + . . . + k n _ 1 \ 
\ k 0 + - . - + k v ; , kv+1 , ••• , k^J* 

(4.2) 
X 
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for any V = ! , • • • ,n - 2. For V = 1, the first factor on the right is the bi-
nomial coefficient 

/ko + kA 

Iterating this case of (4.2) in the second factor on the right, and putting 

kh = k o 
k i = ko + k i 

(4.3) / ° X 

k n - l = k o + k l + * " + k n - l ' 

one obtains the reduction 

- ft:::::a-fflfi)-(a-
Application of this reduction to our final result (3,5) yields the equivalent 

expression 

(4.5) 
SW=k+(n-i>) £..G)K-(&> 

K k0 ki"k0 ^ - 1 - ^ - 2 / k > 0 \ 
T—\ a l " " V l Vf = 0,- . . . n - l / 
n-1 \ / 

where 

(4.6) SW = kjj + . . . + k^x 

is the simpler linear form obtained by the transformation (4.3) from L(9tt) in 
(2.2). The silent summation condition k 0 , , # - , k - > 0 is transformed in 0 
< kf < • • • < kf 

~ 0 - - n - l ' 
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Special cases of the formulae (4.5), with n = 2 and n = 3, have r e -

cently been developed by Arkin-Hoggatt [ 4 ] . 

5. We now turn to the general case of an arbitrary period length i. To 
the £ recurrency formula (0.5), viz. , 

n-1 
(v) _ \^ (X) (v) ( k > o \ 

" i ; \lL+\ " LJ a ^ p(k£+X)-(n-^) \ \ = 0, ••• , n - 1/ 

with the initial conditions (0.4), viz. , 

(5.2) P ^ v f ) = et* C i " = 0f . . . , n - 1) 

we let correspond the I polynomials 

n-1 
,<X> _ W ( A ) ^ = , _ V ^ x

n ^ 

and the n generating functions 

pv'' = pv)(x) = E Px''x" 
k>0 

We split these polynomials and functions into components, corresponding to the 
residue classes mod# of the x-exponents: 

F(X) = 5 ? F £ > with p W B ^ W (5.3) A'=0 A A A 

A i/»=o 
n-v1 =A.?mod# 
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£-1 
V X „ vvx,xx p A f f - yXu .<"> - E pR «*> pf? - P K W 

X"=0 
(5.4) 

(v) k£+An E lf) J 
P K £ + A " x 

k>0 

In order to translate the recurrency formulae (5.1) .with the initial con-
ditions (5.2) into algebraic expressions for the generating functions, we multi-
ply, for each fixed X and v$ the terms a*,xn~ of a component F ! T by 
that component p. Tt for which 

(5.5) Xf + X" s X mod£ . 

Subsequently we sum up, first over the v% with 

(5.6) n - l>f = Xf mod£ , 

and then over the £ pairs Xf,Xtf with (5.5). According to the congruences 
(5.5) and (5.6), we put 

(5.7) (n - P*) + X" = X + M , 

with an integer h > 0. The whole procedure will be quite analogous to that in 
Section 1 for the special case ft = 1. In the first place, one has 

(X) n-i/ '(i/) _ V* (X) (v) v(kl+X")+(n-^) 

k>0 

kX) 

,(A) W k£+A E oWAV) 
V p(k-h)£+A'? 

k>h 

K>h 
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V a ( A ) o ( i ; ) xM+X 

LJ V pfe£-fA)-(n-^) 
k>0 

1L V pfe£+A)-(n-y')X 

0<k<h-l 

(A)(w) k£+A 

k>0 
Z-f V p« 

>o 

( aptr^"^ for V = V - A mod i and l/f < v\ 
0 otherwise / 

The latter one sees as follows. The summation condition 0 < k < h - 1 im-
plies, again by (5.7), the inequality chain 

-n < -(n - V) < A - (n - V) < (M + A) - (n - ff) < ( (h - IK + A") 

_ (n _ yf) = -(&. - A " ) ^ - 1 > 

so that the initial conditions (5.2) are applicable. They say that almost all 
terms of the sum in question vanish, save only one with 

(M + A) - (n - i/1) = -(n - v)9 or else, kl + A = V - V1 . 

Such a term can occur only if v% = v - X mod it and V* <> v. If these condi-
tions are satisfied, it actually occurs, because then the equation kS. + A = V -
vx has a solution k > 0 with 

M = (i; - i/t) - A < (n - i/T) - A = M - A " < h£ , 

and hence k < h - 1. 
Summation over the V1 = 0,» * * ,n - 1 with n - i>? = Af mod I , accord-

ing to (5.3) now yields 
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n-1 
<A) JO) sJW _ x^ / \7* „ (A) (V) \ M +A 

409 

(FAf - e A f ) p A „ - - W 2 ^ V p ( £ + A ) - ( n ^ ) 
k > 0 \ *"=0 

, x. 

(A) v-v* 
a i / i x 

n-z^=Af mod£ 
^-^f=Amodj2 

and summation over the pairs Af, A" with A? + Af? = A mod I further yields 

n-1 

E F(A) 
FA< 

Af+Aff=modi 

X ktf+A 
X 

A' 

+ 

V-

PW _ 
A 

n-1 

E 
i/f=Amod0 

-2 k>0 [ 

V x 

a (A) DG» 
V P( £+x)-(n-i;f) 

^f=0 
X 

Here the negative terms on the left and right a re equal to each other on account 
of the recurrency formulae (5.1). Thus the following system of I linear equa-
tions for the I components "9 \ of the generating function P results: 

£ I-WpJ) = A<A,*> with A(A,^) 
A'+A"=Amod« 

(5.8) 
= A<A,^) w 

n-1 

E 
l>-^=Amod0 

V x 

The matrix of its coefficients is built up from the components F . f of the 
(A) f 

characteristic polynomials F . Lines and columns of this matrix are speci-
fied by A and A" = A - AT mod i (not by A and Af). Written out fully, it 
is the matrix 
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(F(A) ) 
s \-\"' X lines X" columns 

/'? 
F « > 

\ ^ 
\ F ^ 

F<°> . . . 

0 

2-2 

rf 
' , W 

' J " U 
Here X - X" on the left is to be understood as reduced to its least non-negative 
residue mod i. 

Now let 

D = F(A) 
X lines 
X" columns 

denote the determinant of this matrix and (D^ ) its transposed adjoined 
matrix. Then the linear system (5.8) has the solution 

(5.9) P j ! = £ 2 g , (X" = (>,•••, I - 1) 

From this one obtains the following algebraic expressions for the generating 
functions themselves: 

A=0\X"=0 A A / 
J>) 

(5.10) V(V) = M ^ L Z T _ _ ^ , (1/ = 0, • • • , n - 1> . 

In order to obtain explicit expressions for the recurrent sequences p^ , 
one has to develop these rational functions of x into power series in x. This 
seems however extremely difficult. One would first have to find a sufficiently 
smooth expression for the determinant D and its minors D^_.„ . 

In the following two sections we illustrate this on the next-simplest case 
i = 2 and carry it through to the end under the special assumption n = 2. 
After what has been delineated in the preceding sections, we can be brief in 
doing this. 
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6. In the special case I = 2 we have to consider two alternating r e -
currency formulae 

n-1 

2k JLJ VfP2k-(n-^) ' 

n-1 
P2k+1 / ^ Vp(2k+l)-(n-&") , 

i"=0 

for each of the n linearly independent initial conditions 

V(Z-W) = *V< (" '1" = 0, - - - . n - 1) . 

For the sake of easier readability, we here have distinguished the two coef-
ficient sequences, hitherto denoted by a , instead by the upper indices A = 
0,1 by writing them with two different letters a ,b. In the same manner we 
denote the polynomial pairs F and A (A = 0,1) now by F , G and 

(v) (v) A , B , respectively. 
From the pair of characteristic polynomials 

n-1 

F = F(x) = 1 - ^ V x 1 1 " ^ = F0 + FA , 

n-1 
G = G(x) = 1 - ^)T bvtxn'^ = G0 + Gi , 

i>f=0 

each decomposed in its even and odd components, algebraic expressions for the 
generating functions 

P M « P M ( D =x)p- ) x k = p r + p r • 
k>0 

likewise decomposed, are found as follows. 
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The linear equation pair (5.8) for the component pair Pft , P- has the 
matrix 

( F° M 
\ G i G 0 / 

with the determinant 

D = F0G0 - FiGt , 

and with the transposed adjoined matrix 

/ G0 - F A 
V"GI F„/ 

The terms on the right are 

v 

z/-y?=0mod 2 

B M E , v-v' 

y-yf=lmod 2 

Hence the solution (5.9) for the components is 

w GpA^ - FtB<» (v) - G ^ H- F 0 B ^ 
0 F0G0 - FJGJ • P l F0G0 - F!Gi 

and the generating functions (5.10) themselves are 

, . (G0 - Gi)A(l,) + <F0 - F j j B ^ 
(6.1) P W = 

F0G0 - FjGj 
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It is worth remarking that this can be written in such a way that only the 

characteristic polynomials F,G themselves, not their components, figure in 
it. For, the component pairs are given by 

F | W - i w + pfc*) . FI(X) = F<*> ; F<~*> . 

G0(x) G(x) + G(-x) G!(x) G(x) - G(-x) 

Thus the determinant becomes 

D(x) = F(x)G(-x) + F(-x)G(x) 

and the generating functions become 

(6.2) V(V)(, _ G(-x)A{U)(x) + F(-x)B(i;)(x) 

7. Under the special assumption n = 2, one has 

1 - a tx - ZQX2 = (1 - a0x2) - ajx , 

G = 1 -
°> - « - ao 
0 ) = 0 

bix - box2 = (1 

A*1* = a , 
B ( 1 ) = b0x , 

- b ^ 2 ) - b t x , 

D 

,(0) 

(1 - a ox2) (1 - b ^ 2 ) - a ^ x 2 

1 - (a0 + b0 + ajb^x2 + ajbjx4 , 

a0 + a0biX - a0b0x2 

(1) aA + (b0 + ajbjjx - a0box3 

D D 

The power series development of l /D is 
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1_ 
D E ( (a0 + b0 + aib^x2 - a0boX4 ) 

kXO 

E ( k ° k
+ k l ) (ao + b0 + a1b1)kO(-a0b0)kix2ko+4ki 

k 0 , k £ D \ K l / 

E E ( -D k l ( k ° u k l V o + b0 + a ^ ^ f e o b o ) ^ 
k»>0 k0+2kf=k \ M / 

2k 

(7.1) 

0 D = E 
kXO 

- E 
k>0 

£1=k \ K 1 / 

2k 

+1 

From this, one obtains easily the following power series developments for the 
even and odd components of the two generating functions: 

( 0 ) _a0-aob0x2 _ v f 

ko+2k; 

S , -vk-i/ko+ki-lY , , , , \kn-l ki+l,kf ( -DM V 1 J(a0 + bo + a1b1) ° a0* b0* 
k0+2k1=k \ M / 

L (kq>D 

E T E ( - l ) k l ( k V + k l ) b 1 ( a 0 + b 0 + a 1 b 1 ) k O a ^ ^ l x 2 k + 1 

k>0 k0+2ki=k \ M / J 

E (~Dkl (k°k
+ k l ) ai(a0 + b0 + a l b l ) k ^ b k * l x 2 k 

k0+2ki=k \ M / J 

2k 

,(0) a0bi 

"IT" 

0 " D kXO 
^(1) ^ (bo+a^iJx-aobox 3 I~ / ^ k 

k>DLk0+2ki=k D (-if1 X 

X (
k ° k + k l ) (b0 + a l b l ) (a0 + b0 + a^/oa^lx21^1 

E f E (-Dklfk°k
+ kl"*V 

k>0 ko+2k!=k \ * I 
L (kt>L) 

i , i. , u ^ko-l k i + 1 u k i + 1 l 2 k + 1 
(a0 + b0 + a ^ i ) ° a0* bo1 x 

The sums in square brackets — or in the first and fourth cases , more exactly, 
their differences — are the looked for explicit expressions for the recurrent 
sequences (Q) (Q) (1 ) & ) 

P 2 k * P2k+1 a n d P 2 k ' P2k+1 ' 
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8. We finally come to consider the important special case, where H = 
n, i. e. , the period length coincides with the dimension of the algorithm, and 
where n2 indeterminate recurrency coefficients a , are specialized to com-V 
binations of only n + 1 indeterminates a^ and t as specified in (0.10), (0.11), 
viz. , 

,3.x, 4» = vx-\ ^v* ." , . ) ; ii j:r>:| 
In this case the recurrency formulae (0.5) specialize to 

(8 2) D<"> - y ' t ^ ' ^ a DW I k > 0 ^ 
[^> Pkn+A ~ ^ * Vp(kn+A)-(n-t") \u = 0,- •"• ,n - 1 ) ' 

with the n linearly independent initial conditions (0.4), viz. , 

<8'3) P-"(U<) = e ? (V'V' = 0, - - - . n - 1) . 

These recurrency formulae can be reduced to those of the special case 
t = 1, but with new coefficients. For this purpose consider the modified 
sequences 

(8 4) rT{v) = tk+VU) . 
1 5 e 4 j Pkn+A l Pkn+A 

They satisfy again the initial conditions (8.3). Now the p^ -subscripts on the 
right of (8.2) reduce as follows to the canonical form on the left: 

(kn + A) - (n - V) = (k - l)n + (A + i>f) = (k - 1 + dn(A,^T) )n + Af 

with 0 < Af < n - 1. 
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Hence 9 

V*-t» p<kn+A)-(n-i») * p(kn+A)-(n-i») 

From (8.4), (8.5), we obtain the following transformation of the recurrency 
formulae (8.2): 

Pkn+A Pkn+A 

n-1 k + l ^ y x ^ ) (v) 

~ ifco V p ( n+A)-(n-i") 

Thus the modified sequences pT ' satisfy the linear recurrency (0.6) with 
the modified coefficients ta„, , and, as already said, with the same initial 
conditions (0.4). According to (0.7), they are therefore given explicitly by 

-(v) = . y / k , + ••• +knV 
Pto+A L ^ + A H M r ' ••' ' kn/ 

(8.6) 
k 0 + - " +ku V - ' ^ n - l ^ kn-l 

x v ^ ~ n w t 

( k > ° ^ 
Vv = 0, • • • , n - 1 / ' 

Going back to the original sequences p V , by (8.4) and replacing the 

no longer necessary detailed subscripts nk+A by simply k, we obtain our 

second chief result, 
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(V) 
P k 

= t Ul * jr / k0 + . . . + kn j 
L(^)=k+(n-^)\kO 5 ° 6 9 9 k n / 

X 

k + • . . + k k + . . . + k t k . 
/o 7\ v 0 V . 0 n-1 0 n-1 

k0 + "•• + k n - l ° n " 1 

/ k > 0 \ 
\v = 0 , — , n - 1/ 

as announced in (0.12). The remark after (3.5), concerning validity even for 
k > -n, i. e. , including the initial values holds obviously for (8.7) as well. 

Application of the reduction (4.3), (4.4) of polynomial to binomial coef-
ficients to this result yields, in analogy to (4.5), the equivalent expression 

» - M1 
pjf' = t L n J £ /klYkA -• /kn-l\ 

(8.8) k ^ 0 a l - V l 
/ k > 0 \ 
\U = ( ) , • • • , n - 1) 

CHAPTER II. GENERALIZED FIBONACCI NUMBERS WITH TIME IMPULSES 
9. It is known from the history of mathematics [5] that the original 

Fibonacci numbers F k , named after their discoverer, and defined by the 
recurrency formula 

(9.1) F k + 2 = F k + F k + 1 (k > 1) 

with the initial values 

(9.2) Fi = 1, F2 = 1, 

describe the mathematical structure of a biological process in nature, viz. , 
of the way rabbits would multiply if no outside factors would interfere with this 
idealized fertility. From a purely speculative viewpoint this recurrency defin-
ition could be replaced by a variety of other structures. So, for instance, the 
initial values could be replaced by others, as was done by E. Lucas. Thus 
(9.2) by (in new notation) becomes 

(9.2') LA = 1, L2 = 3 . 
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Or the dimension 2 of the reeurrency could be increased to any n > 2, as was 
done by the first author [3] who substituted (9.1), (9.2) by 

(9.3) F _ = F . + ••• + F . A , . ( k > 1) , 
n 
F 

k+n 
n 
F 

n 
F k 

j9 . 

+ . 

j 

n 
F n 

+ 

-1 

n 
Fk+(n-

= o, (9.4) F-,» ••• , F - = 0, F = 1 . 
1 n-1 n 

This generalization to higher dimension could be carried further by considering 
recurrencies with constant weights a ,• • • ,a . given to the preceding te rms , 
viz. , 

n n n 
(9.5) F. • = aAF. + + a ,F . ^ , (k > 1) 

k+n 0 k n-1 k+n-1 — 

with arbitrary initial values 
n n 

Formula (9.5) is actually the reeurrency law (0.6) of our introductory section. 
The question which is the natural generalization of the original Fibonacci 

numbers is idle. The answer to it depends on the viewpoint one takes and is a 
matter of mathematical taste and preferences. Raney [6], for instance, has 
proposed a generalization widely different in viewpoint and preferences from 
those mentioned above. 

From a purely biological, or even mechanical, viewpoint one would rather 
expect that a process in nature, depending on n preceding positions, would 
not go on with such an idealized uniform law of passing to the next position as 
are those mentioned above, but rather with additional impulses, acting on this 
law, which are themselves functions of time. It is already a daring presump-
tion that such impulses, imposed by nature, would be recurring regularly. 
But the purely mathematical applications which will be given in a subsequent 
paper are some justification for the subsequent new, and in the view of the 
authors, more tfnaturaln generalization. 

For this proposed generalization of the Fibonacci numbers we modify the 
reeurrency law (9.5), i .e . , (0.6) by time impulses in the shape of a constant 
time factor t += 0, attached to some of the weights a0,**« ,a - according 
to the more general reeurrency law (0.5) of our introductory section. As ini-
tial values we admit throughout ihe n linearly independent standard sets (0.4). 
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From them any set of n initial values may be linearly combined, and the cor-
responding recurrent sequence will then be obtained from those corresponding 
to (0.4) by the same linear combination, 

10. Before we apply the general results (8.7), (8.8) of our first chapter 
to special cases of the generalized Fibonacci numbers with time impulses, let 
us make some preliminary remarks. 

1.) The restriction of summation 

L W = nk0 + (n - l)ki + •• • + Ik = k + (n - v) 

in the sums (8.7) with multinomial coefficients 
/ k0 + • • • 
\ k 0 , 

can be removed by eliminating the last summation variable k - (the only one 
with coefficient 1) on the strength of that restriction, viz. , by putting 

(10.1) k n - 1 = k + ( Q - ^ ) - ( n k 0 + . . . + 2kn_2) 

wherever k - occurs in the terms of the sum. It is convenient to combine n-1 
this elimination with the reduction (4.2) of the multinomial coefficients of order 
n to such of order n - 1 and binomial coefficients. Thus the formulae (8.7) 
become 

V / s o^> \ / k + (n-l>) - L0(^)\ 
P* ~ 2-> I t "... u- II a.fm\ " l x 

k 0 ' - " ' k n - 2 

X k + (n - V) - L0(3K) X 

(10.2) k-|!J+<n-i>)-l-L0$ii) x 
x t 

k 0 k l kn-2 k + ( n - ^ - L o W - S 0 ( ^ ) 
x a A a- • • • a 0 a ., 0 1 n-2 n-1 

( k - ° ) 
y = 0, •••, n - 2J 
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(10.2T) 

>-D V / S0W \ / k + l - L 0 ^ ) \ 

x t 
H^"Lo«x 

% k l kn-2 k + 1 - L o (^ ) -S 0 ^ ) 
xao ai ••• V 2 V i ( k> ° \ 

with the reduced linear forms 

(n - l)kn + . . . + Ik 9 , S0W = kn + . . . + k "0 n-2 0 n-2 

For confirmation of (10.2), (10.2!), notice that with the help of these two linear 
forms the substitution (10„1) takes the form 

k n - l = k + (n " V) " L ° ( 9 } l ) " S ° ^ * 

Notice further that the silent summation condition k - > 0 is trans-
n-1 — formed into the upper limitation of summation 

L0$JO + S0(^) < k + (n - v) 

This limitation may be passed over silently by the following conventions. For 
~LLQ{$R) < k + (n - v) no convention is necessary, because in this case the binom-
ial coefficient vanishes if S0($t) > k+(n-i>) - L0$K); in particular for L<j(3tt) = 
k + (n - v)9 however, we convene to consider the denominator of the subsequent 
fraction cancelled against the same factor of the factorial in the numerator of 
the binomial coefficient, as will actually be done later. For L0(Dtt) > k +(n-
v), we convene to consider the binomial coefficient as being 0-fl this is not in 
accordance with the usual extension of Pascal 's triangle to negative "numera-
tors n -k by means of the fundamental recurrency property, fixing arbitrarily, 
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(t) - > . 
since this extension gives them non-zero values as long as the T'denominator'f 

is non-negative. 
Observe, by the way, that for V = n - 2 one has k0.+ • • • + k = S0W>. 

Hence in this case the binomial coefficient can be combined with the subsequent 
fraction to 

/k + (n - V) - L0fa) - l \ 
V S0W - 1 / 

In (10.2), (10.2f)9 the restriction of summation L(9tt) = k + (n - v) has 
disappeared. This is deceptive, however, in cases where the recurrency co-
efficient a - is specialized to 0. For , in such cases only the terms in which 
a - has exponent k - = 0 remain in the sum. Thus the restriction r e -n-1 ^ n-1 
appears, so to say, by the backdoor, in a slightly modified form, viz., without 
the term Ik -. This is a change to the worse, even to the worst, into the 
bargain since now there is no longer a term with coefficient 1 which would allow 
a further elimination. 

2.) Things stand better with the sums (8.8), in which the polynomial co-
efficients have been reduced to products 

U/ 'VW 
of binomial coefficients. Here, in the restriction of summation 

S W = kjj + ••• + k ^ = k + (n -i>) , 

each of the n summation variables k*9°"9k* - has coefficient 1, so that 
there are n different ways of removing the restriction by elimination. How-
ever, in cases where a recurrency coefficient a f with v* > 1 is specialized 
to 0, only the terms with k' = kj,f 1 remain in the sum, so that the coef-
ficient of k» becomes higher than 1, and thus elimination of k^T is barred. 
For this reason the restriction can be removed only in cases where either at 
least one consecutive pair a,,., alf f,- with 0 < i " < n - 2 o r a . alone is 

v% i/'-f-x — — n—I 
not specialized to 0. 
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We shall chiefly be concerned with the lat ter case a - =# 0, in which 
reduction of the sums (8.7) to unrestricted summation has already been achieved 
in (10.2), (10.21). For treating the eases where some of the preceding a ^ are 
specialized to 0, it will, however, be more convenient to start from the cor-
responding reduction of the sums (8.8), viz. , 

(10.3) 

M „ 

V"'kk-2V 
v x k + (n -

xtk"LEJ 

kb k i 
x a Q a.x 

K 
~w^ 
(ti-V) 

K) \ 
__ v 

^mx 
-1 -S 0 M 

n-2 • • a 0 n-2 

k? 

^ n-

X 

-K-

- 3 / 

" 3x 

x a 
k+(n-^)-S0^,)-kJi_2 

ti-1 

( k > 0 \ 

(10.3') { 

kb-"kk-2Vko/ W - i A n-2 / 
k - l ^ -S0(^') X 

x t 
k'o k ' r k o 

x cir\ a-

k' „-k« „ 
a n - 2 n - 3 x 

n-2 

x a, 
k+l-S0(^)-k^_2 

n-1 

\?iv.) 
with the reduced linear form 

So(^!) kb + + k* 0 n-2 
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The remark made after (10.2), (10.2f) about the silent summation condi-
tion k* > 0 holds, mutatis mutandis, also for the silent summation condi-
tion k' > k' in (10.3), (10.3T), the latter corresponding to the former 

n—x — n— u 
under the transformation (4.3). We uphold the conventions made in that remark, 

We must enlarge, however, on the subsequent observation about the pos-
sibility of combining the binomial coefficient in (10.2) with the subsequent frac-
tion for v = n - 29 because this observation generalizes here to all v = 0, 
° • • , n - 2 and thus allows to get rid of these fractions altogether. This is 
seen by the following chain of reductions.8 

/k + (n - v) - S0(^f)\ k^ kj, /k + (n-i/) - S0(^?) = 1\ 
{ k^2 JTTlJr- v) - s0(R-) = k ^ \ k ^ - l J • 

which, of course, has to be considered only for k' > 1 and hence all subse-
quent k' , • • • , kf

 0 > 1, too. This chain of reduction yields 

/ ki+i\ / k ; - 2 v k + (n - v ) - s°m\ 
\ K)"\k'n-3A K-2-1 P 

K 
!k + (n - v) - S0$R') 

/ k m - x\ (K-2 ~ V * + (n"v) ~1 ~So(3K,)) 
\ K-1 J " W - s - V l K-2-1 ) 

By the transformation 

k i ; - i ^ k . ) - . - > k . + 2 - i - k ^ 2 

after which the summation range is again k* ,° • • ,kf
 2 > 0, then 
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S(9R') S(9R') + (n - V) - 1 , 

[Nov. 

and thus (10.3) becomes 

(10.4) 

C) 
Pk 

/k.e^-So^Ak-g] 

X 

^ - S o ^ ' ) 

k ^ ' k.-k- k ^ - k ^ 
X aQ ax • • • a y - - X 

(V) 

X a 
kn-2-kn-3 k + en-rS0<W ,>-kn-2 
n-2 n-1 

/ k > 0 \ 
^> = o , - - - , n - iy 

where the modified middle terms 

and 

(V) (V) are only meant for V - l , e e 9 ,n - 2, and where e;. ,ev ' are the coefficients 
in the first and last column of the unit matrix, introduced in (0.4); by inserting 
e - at the two places, the case v = n - 1, split off in (10.2!), (10.3f), could 
now be re-included. Formulae (10.4) could be expressed more concisely in-
troducing also the other e^f (i/f = 1,* • • ,n - 1) and using the product sign: 
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(10.5) { 

p k 
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/ n - 2 / k ' + e(V)\ k' +e(I,)-k» ^ 
x 

k-f-l-S0Gwf) A + e W 

X t 

k+e^'-So&R^-k' 
X a n-1 n-2 

n-1 

425 

( k > ° ) 
yp = o,---,n - i y 

where one has to understand formally k* = 0. For our intention of passing 
to special cases, though, formulae (10.4) allow a better survey. 

Notice that for each V = 0,* • * ,n - 2 the silent summation condition for 
kf

p in the formula (10.4) or (10.5) for pV' has to be modified into k ' + 1 > 
kf 
V-l' 

Since the original formulae (3.5), (8.7), (10,2) and (1Q.21) with the poly-
nomial coefficients will not be referred to again, we shall hence forward sim-
plify the notation by omitting the dashes on kls • • • ,kn_2« 

3.) As to specialization of the recurrency coefficients RQia1,' • • »an_-^s 

we may suppose without loss of generality a0 ^ 0, by considering only recur-
rencies of the exact order n. In the Jacobi-Perron algorithm there is always 
even a0 = 1; see (0.1) and what was explained before and afterwards. 

4.) For a0 = 1 and t = 1 the two recurrent sequences p k and 
p 1 with the first and last set of our standard initial values (0.4) are essen-
tially equal to each other, i. e., they differ only by a translation of the sequence 
variable k: 

(10.6) (n-1) = P, 
(0) 
k+1 

(k > -n) 

M ,0. Hence by the recurrency formula 
, 0 , 1 . Since for 

For , p ^ has the initial values, 1,0, 
Pg = aQ = 1. Therefore p£+ has the initial values 0, 
t = 1 the recurrency formulae for pj^ ' and pj^~ ' a re the same, (10.6) 
follows. 
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11. We now apply our general results to special cases of the generalized 
Fibonacci numbers. We base these applications as far as possible on our 
appropriately adapted main result (10.4) for cases with recurrently coefficient 
a n ^ 0. Only in the cases with a _ = 0, treated at the end, we have to go 
back to the original result (8.8). 

1.) The uniform case; a0,ai,« • • , a n _ i = 1; t = 1. 
In this case we found it convenient, in order to avoid confusion, to put 

the recurrency order n on top of the sequence let ter , as already done in 
(9.3-5). Here (10.4) becomes simply 

k 0 , . - . 9 k n _ 2 \ V \ V l / \ k n - 3 / 

/ k + e ^ - S o W V ^ ^ ^ 

\ kn-2 / \V = 0 , -~ , n - l ] ' 

(11.1) 

X 

with 

S0(*R) = k0 + • • • + kn_2 . 

The first and last of these sequences, essentially equal to each other accord-
ing to (10.6), are essentially equal to the sequence of generalized Fibonacci 
numbers considered by the first author in his previous paper [3] , and men-
tioned above in (9.3). For , adaptation to the initial values (9.4) of those latter 
yields 

n n, m n, . 

In particular, for n = 2 there remains only one summation variable 
k0 = s, and (11.1) becomes 
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These two sequences are essentially equal to the sequence (9.1) of the original 
Fibonacci numbers. For, adaptation to the initial values (9.2) of those latter 
yields 

Notice that, unfortunately, the initial values (9.4) of the generalized Fibonacci 
numbers 

n 

are not in accordance with the traditional initial values (9.2) of the original 
Fibonacci numbers F^., corresponding to the special case n = 2. By (11.2), 
(11.4) the connection is 

(11.5) l k + 1 = F k , 

U e. , a translation by 1. The traditional initial values (9.2) are in accordance 
with the representation 

rk = i r _ £ r - , (k > o) 

where 

1 + *y/5 
€ 2 

whose analogue for the Lucas numbers is 

L k = ek + e'k (k > 0) 

The Lucas numbers, according to their initial values (9.2!)9 are obtained 
by the linear combination 
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2 , ^ 2, 
(11.6) > * - & • * & - £ ( * - : - • ) • » ( ' - : - • ) * > * 

The representations (11.4) and (11.6) of the historical Fibonacci andLucas 
numbers a re well known [5]. 

In all following cases we presuppose 

a0 = 1, t arbitrary , 

the latter with the only natural restriction t ^ 0 . 

2.) The multiple uniform case: all a j , 8 • • ,an_^ = a ^ 0. 
In this case we have to attach to the expression (11.1) the powers of t 

and a according to (10,4). In order to determine the exponent of a in the 
simplest possible manner, observe that the sum of the exponents of ao,aj,- • • , 
a - in (10.4) (or (10.5)) reduces to k + 1 - S0W. But since here only a4, n " 1 (v) 
. . . ,a - = a whereas a0 = 1* the exponent k0 + e0 has to be subtracted. 
Thus 

/ 

(11.7) 

^ / k l k , + 1 \ /kn-2Vk + en"A-So«V 
V . ^ k n > 0 •" V l / ' > n - 3 A V2 / 

k-[ | ]-So0O k+ l -e^ -So^J -ko 
X t a 

with 

S0^) = kQ + • • • + kn_2 

We illustrate this by the two lowest cases: 

n = 2 

«••> pf = i ; ( - k v k > k - ^ * - (;_»).. 
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(11.9) 

BERNSTEIN AND HASSE 
n = 3 

429 

D ( 0 ) 

,<D -

,(2) _ v / k A / k + l - (k0 + ki) \ 

k,kAk«;l ^ ; 

r A i V k - (ko + k1)Vk-[3j"( k o + k l ) k-(2ko+ki> 

&M ki / 
r /k, + l \ /k - (k0 + kl)Vk-[|]-(ko-*i)ak+l-(2k0+k1) 

k ^ k + 1 - (k0 + k l ) ^ k - ( | ] - ( k o -* i ) a k+ l - (2k 0 4k 1 ) 
(k > 0) . 

It would be worthwhile to confirm (11.8) from (7.1) by specializing there a0 

1, bo = 1, aj = a, bj = ta. 

3.) Reduced multiple uniform cases: some a,,. = 0, the other a 
v V 

a ^ 0 (i" = ! , • • • ,n - 1). 

a) Cases with a _1 = a ^ 0. 

As we saw in Section 10, in these cases, the general reduction (10.4) to 
unrestricted summation is effective. The results a re obtained from (10.4) by 
simply adding the summation conditions 

V = "V-l for a11 "' ^ " wift V = ° ' 
K = Vl " ! if V = ° • 

They effect that the correspondent binomial coefficients 

L : - 0 - (x:/) 
drop out becoming 1, and that the linear form S0(^) is changed to no longer 
homogeneous linear functions Spfa) of the remaining summation variables. 
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We illustrate this in the two eases where all but one or all of the coef-
ficients aj,* • • ,a 2

 a r e specialized to 0. 

(i) a i > * " ' a r - l ' ar+l'" "-n-2 
a„ o = °; a

r = a ^ 0 

(1 < r < n - 2) 

(11.10) .(y) 

) k-SJ,(k',k"), 

(n-1) 
pk>* 

/k»\/k " Syfe'.k'OX k-gJ-S^k'.k-
L' ,k"\ k 'A k" / 

/ k > 0 \ 
\v = ( > , • • • , r - 1} 

/k" + l \ / k - Si;(k',k»')\ k-^J-S^k'.k") k+l-SJ/k',1 

; ' ,k»\ k1 A k" / 

( k ^ ° ) 
\v = r , • • • , n - 2 / 

/ k » \ / k + 1 - S^(k',k")\ k-^J-S^k'.k'-: 

:',k"\k'A k" / 

') k+l-SJ/k^k") 
a 

with the linear functions 

I V for v = 0,'" , r - 1 

v - r for 
0 for 

v = (),••• , r - 1 ) 
1/ = r , - « - , n - 2 } 
y = n - 1 ) 

and 

Sj,(k',k") Sl/(kf,k") + k! = (r + l)kf + (n - 1 - r)k" 

!

v for v = 0, ••• , r - l ) 

v - r for 1/ = r , ••• 9 n - 2> 
0 for M n - 1 ) 

(ii) a l ' ' " ' a n - 2 " ° 
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1 ^ 
k ' / / \ 

\v = n - 1 / 

with the linear functions 

S^k') (n - l)k' + V for V = 0,--- ,n-2 
(n - l)k' for V = n - 1 

and 

S^(k') = Sj/k'J'+k' = nk' + V for v = 0 , - - - ,n-2 
nk' for V = n - 1 

We illustrate (11.10) and (11.11) by the lowest case: 

In (11.10) for n = 3 the only possibility is r = 1. But then a0 = 1; 
ai,a2 = a ^ 0, and no coefficient is specialized to 0. Hence formulae (11.10) 
must coincide with (11.9), which is confirmed at once. 

Formulae (11.11) for n = 3 specialize to 

(11.12) { 

\ 

(0) v> /k - 2k'\ tk-L3j-2k,
ak-3k. 

k - 2k' - l\<.k"L'5j"2k'"1 k-3k'-l ^, / t a 

k-|-gj-2k' k + 1_3 k, 
a 

( k > 0) 

The term with k = 0, kf = 0 in the second formula is an example for the 
necessity of our deviating convention after (10.2), (10.2?) about the binomial 
coefficients with negative "numerator. " From the recurrency 



432 FIBONACCI QUARTERLY [Nov. 

4] = IPS + °P-2 + ^ 1 
with 

p ( 1 ) = 0 p ( 1 ) = 1 p ( 1 ) = 0 

it is obvious that p^ = 0. But (11.12) would yield a non-zero value p^ , 
with negative exponents of t and a into the bargain, if the binomial coefficient 

~ of the first term of the sum would be given the usual value 1. 
b) Cases with a - = 0 

As we saw in Section 10, in these cases, the general reduction (10.4) to 
unrestricted summation is ineffective, and we can achieve our aim in the same 
way only if there is at least one consecutive pair of recurrency coefficients 
a , a f - with 0 < v% < n - 2, which are not specialized to 0. 

We shall consider here again only cases where all but one of the coef-
ficients a- ,• • %a 2 are specialized to 0; in the case where all of them are 0, 
the recurrency 

» _ Jv) p k = pk-n 

is trivial. 
Let a = a / 0 be the only coefficient remaining intact. For r = 1 

the pair a0 = 1, a = a satisfies the above condition, for r = 2,**« , n - 2 
however it is not satisfied. In both cases, we have to go back to our general 
result (8.8). 

(i) a4 = a ^ 0; a 2 , - " , a n _ ! = 0 

Here, in (8.8) are to be added the summation conditions 

K2 = ••• = K n-2 = K > 

so that now 

S(m) = S(K0,K) = K0 + (n - 1)K 

Thus (8.8) becomes 



1969] BERNSTEIN AND HASSE 433 

D ( 0 ) -
S<K, 

Z (K) 
„K)=k+nVK'/ 

2 (i-^\ 
S(Ko,K)=k+n\K9 " V 

K„ t
K l E j - l a K - K o 

K-Kn 

(11.13) 

S(K, 
K-K0 

» 
S{K0,K)=k+(n- . y ) \ K o / 

/ k > ( ) \ 

l" ""7 
.K-Kn 

/ k > 0 • \ 
^ = l , - - ' . n - 11' 

Since in the summation condition K0 has coefficient 1, i t can be eliminated, 
putting 

K0 = j k - (n - 1)K for v = 0 
| k + (n - V) - <n - 1)K for v = ! , • • • ,n - i f 

Making this substitution, we can however no longer silently pass over the sum-
mation conditions 0 < K0 < K. Thus we obtain 

(11.14) 

(n-l)K<k<nK\ 

M 

( K \ KinlnK-k 
^k - (n - l)Kf * ^ 

(Hi) 
= (n-l)K<k5(n-.)<nK( k + ( n " ^ " <n " 1 ) K ) X 

/ k >° \ 
y V = !,'•',n - 1J 

X ^ l n J - ^ n K - k ^ n - ^ ) 

We illustrate this by the lowest case: 
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n = 3 

[Nov. 

(11.15) 

M 

(i) 

P? 

( K ^ 
\k - 2K) 

, ? 2 < 3 K \ k + ^ 2 K ) 

c?i<3K(k + 1 - 2 K ) 

t
K-[3Ja3K-k 

2K<k<3k 

2K<k+2<3K 
tHjd"1

 a3K-k-2 

* 13] 3 K - k - l t L J a 
2K<k+l<3K 

( k> 0) 

F o r m u l a e (11.9), (11.12), (11.15) together cover al l poss ib le c a s e s of genera l -

ized Fibonacci number s of o r d e r n = 3 with t ime impu l ses . 

(ii) a l 5 - • • , a n _ l f a ^ , - • • 9*Rmml = 0; a^ = a ^ 0 

(2 < r < n - 2) 

H e r e , in (8.8) a r e to be added the summat ion conditions 

K0 = • • • = K 1 = K, K = • • • = K - = Kf , r - 1 n - 1 

so that now 

S W = S(K,KT) = rK + (n - r)K' . 

Thus (8.8) becomes 

(V) 
Pk 

(11.16) 

^ " [ H ] - 1 K'-K 

S(K 

/K'\JK 

, K ' ) = k + ( n - y ) \ K " V 

y MtK'"LnlaK'-K / k > o \ 

S(K,Kf)=k+(n-i^) 

S(K 
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Since here in the summation condition, both variables K, K? have coefficients 
r , n - r > 1, neither of them can be eliminated, so that by (11.16), other 
than (11.13), has to be considered as the final resu l t 

There i s , however, one very special case in which a different possibility 
of achieving unrestricted summation presents itself, viz. , if both coefficients 
r , n - r are equal, or else: 

n = 2r 

In this case the summation restriction is 

2. nc 4- K-n = ) k " v f o r v = °>e e 8 ' n / 2 ~ * 
2 ^ ^ ; ) k + ( n - i > ) for y = n / 2 , " - - , n - l 

(v) / 
Hence the sequences p contain non-zero terms:only for k = z^modn/2, 
respectively. Putting accordingly 

k = lfh + * 
l l h + („. • } ) 

for 

for 

v= 0 , » -

* - » • 

n 
' 92 
. . . 

- 1 

, n - 1 
(h > 0) , 

the restriction becomes 

K + Kf 

for V = 0 , — , ~ - 1 

h + 1 for i> = •£,••• ,n - 1 

Here KT, say, can be eliminated by the substitution 

h - K 
Kf = 

for P= 0$" ' , 2 " 1 

h + 1 - K for V = £ , • • • , n - 1 

Thus in this very special case the non-zero terms of the sequences pJ are 

the unrestricted sums 
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B h + , K V K / ^ = 0 , . - - , 2 - V 
(11.17) 

2 

K I'M Tf 
(t>) v / h + l - K \ t L2J • h+l-2K 

We illustrate this by the lowest case: 
n = 4 

(11.18) 

W - W h ~ KVh-L2j"K h-2K / h >: 0\ 

V- / h + 1 - K \ .h""L2j""K
Qh+l-2K / h >> 0 \ = £ \ K T a ^ = 2 , 3 J ' P2h+(^-2) K 

However formulae (11.17), (11.18) a re immediate consequences of the 
general result (11.8) for n = 2, because considering only the non-zero te rms , 
the corresponding recurrency formulae reduce to those for the generalized 
Fibonacci numbers of order n = 2 with time impulse. This shows the under-
lying true reason why reduction to unrestricted summation is possible in this 
very special case (and in similar cases with any proper division of n instead 
of 2 as well), in spite of what has been said in Section 10. 
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