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A sequence of numbers {c , n = 0,1,2,- • •} is defined from its gen-
x 

erating function exp (1 - e ). A series representation for C (which is anal-
ogous to Dobinski's formula), a relationship with the Stirling numbers of the 
second kind, a recurrence relation between the C and a difference equation 
satisfied by C are obtained. The relationships between the Bell numbers and 
{C } are also investigated. Finally, three determinantal representations for 
C a re given. The 'Aitken Array1 for C , 1 < n < 21 is given in the appendix, 

1. INTRODUCTION AND SUMMARY 

While studying the moment properties of a discrete random variable 
associated with the Stirling numbers of the second kind, crJ, we encountered 
an interesting sequence of numbers. More explicitly, let X be a discrete 
random variable with probability distribution 

(1.1) P{X = j} =(Jl/\> i = 1 .2 , - - - .n 

where 

n 

EaJ = B , n = l , 2 , ••• n n 
3=1 

are called the Bell numbers. The k moment of the random variable X is 
given by 

n 

(1.2) D(Xk) = J ] ik(Ji/\ = B
n

k)/Bn (sa^ ; 

j=l 
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(k) and the f i r s t s ix values of B a r e given by 

B ( 0 ) - B n n 

B ( 1 ) = B + 1 - B n n+1 n 

B ( 2 ) = B _^ - 2B _ 
/! Q\ n n + 2 n + 1 

B = B ^ - 3B ^Q + OB ^ + B n n+3 n+2 n+1 n 

B ( 4 ) = B . - 4B ^Q + OB ^ + 4B , - + B n n+4 n+3 n+2 n+1 n 

B ( 5 ) = B _L_ - 5B ^ + OB ^Q + 10B ^ 0 + 5B _,, - 2B . n n+5 n+4 n+3 n+2 n+1 n 

(k) This led us to look for an express ion for B in t e r m s of the Bell number s 

B ,, j B ,, - , • • • , • • • , B of the form n+k n+k-1 ' n 

i=0 

The f i r s t few C , i = 1 ,2 , ' •• a r e given by C0 = 1, Cj = - 1 , C2 = 0, 

C3 = 1 , C4 = 1, C5 = - 2 , C6 = - 9 , Cf = -9 and C8 = 50. In this pape r we 

will study some p rope r t i e s of the sequence { c }. In the next sec t ion , we give 
r ~\ x 

an ad hoc definition of (C ) in t e r m s of the genera t ing function exp (1 - e ) 
and prove some p r o p e r t i e s . We a lso der ive a re la t ionship between Stir l ing 
number s of the second kind and the C . In Section 3 , we will de r ive some 

n 
re la t ionships between the Bell number s and the C . In Section 4 , we will o b -

tain some de te rminanta l r ep resen ta t ions for the C . The proofs a r e c losely 

re la ted to the proofs (due to s eve ra l authors) in the case of Bell number s a s 

s u m m a r i z e d by Finlayson in his thes i s [ 1 ] . 

2. THE NUMBERS GENERATED BY THE FUNCTION exp (1 - e X ) 

Definition: The sequence ( c , n = 0 , l , 2 , i - - } is defined by i t s expo-

nential generat ing function, 

oo 

„ k 
(2.1) 2^ c

k KT = e x p (1 ~ eX) • 
k=0 
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From the power series expansion of exp (1 - e ) we will give an infinite series 
representation for C, . 

Proposition 1; 

k 
(2.2) Ck = e 2 M ) r rT' k = 0,1,2,-•• . 

r=0 

Proof: From the definition we note that C, is the coefficient of x /k! 
x 

in the Maclaurin series expansion of exp (1 - e ). 

exp (1 - e x ) = e Y j ( - l ) r exr/r.? 

r=0 

z l Xr k k 
P V ("1) V x-iL-
6 LJ r! LJ- k! 

r=0 k=0 
OO OO 

k k 

k=0 r=0 

which shows that 

k 
Ck = e S ( - 1 ) r 7 F J k = 0 ,1 ,2 , ' -

r=0 

We will use this series representation to obtain the relationship between the 
Stirling numbers of the second kind cr? and C. . We define a 0 = 1 and cr£ = 
0, k = 1 ,2 , " - . 

Proposition 2: 

k 

(2.3) Ck = J^ ^ H • 



440 NUMBERS GENERATED BY THE FUNCTION exp (1 - eX) [Nov. 

Proof. In terms of the j differences of powers of zero, AJ(0 ), we 
have, according to Jordan [ 3 ] , 

k r 

c k 

j - 0 

r=0 

r=0 j=0 

--h^h^ 
r=0 j=0 

k i k 

j=0 r=j 

j=0 

which proves the result since A^O ) = j - 0 " ^ • 
Customarily, Stirling numbers of the first kind a re defined as numbers 

with alternate signs, whereas Stirling numbers of the second kind are defined 
as numbers with positive signs. The relation (2.3) for the C , and the cor-
responding relation for the Bell numbers B , given by 

B =V<r> , 
n L*d n 

j=0 

suggest that the Stirling numbers of the second kind may also be defined with 
alternate signs. 
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Using proposition 1, we now obtain a recursive relation between the 
C-numbers. 

Proposition 3. 

(2-4) Ck+1 = - Z ( j ) C j k = 0 , l , . . . ; C0 = 1 
j=0 

Proof: 

k+1 
ck+i = e Z <-«' V 

r=l 

= e £ (-1)S+1 ^ -
s=0 

s=0 j=0 

k 
) sJ 

j=0 * ' s=0 j=0 = -E0>E^ = -E0h 
In the next proposition we will show that C satisfies an n order dif-

ference equation. As before, let A denote the difference operator and let E 
= 1 + A, so that E:iC() = C , j = 1,2,' " . 

Proposition 4: 

(2.5) A*Cl = £ (-1)n"3( j ) C M = ~ C n ' n = 1,2,-
\ J / J'r-L n 

3=0 

Proof. The first equality will be established by the binomial expansion 
! - 1) , and the second equality follows from pr 

pleteness, the proof is sketched on the following page. 
of (E - 1) , and the second equality follows from proposition 1. For com-
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n 

AnCj = (E - l)nEC0 = J ] (-l)n"jMEjECo 
j=0 

j=0 ^ 4=0. 

r = l j=0 

00 

r = l 

The difference equation A C- = -C can be used on computing Ci ,C 2 ,* • • , C n 

for smal l values of n. This computation can be a r r a n g e d in a t r i angu la r a r r a y 

C! ACi A2CA A3Ci A4Ci • • • 

C2 AC2 A2C2 A3C2 . - • 
(2.6) c 3 AC3 A2C3 . . . 

C4 AC4 . . . 

c5 . . . 

The f i r s t column gives us the value of C n , n = 1 ,2 ,3 ,* •• , the second column 

gives us the f i r s t d i f fe rences , and "the j t n column gives us the j differences 

of C , n = 1 ,2 ,3 ,* • • . This table can be filled up a s follows: Le t us a s s u m e 

that we know Cj = - 1 . Equation (2.5) for n = 1, with ACi = -C i enables 

us to find C2 = C t + AC4 = 0. Now using (2.5) again for n = 2 , we find A2CA 

= - C 2 = 0. Since A2Ci + A C j = AC2 we find AC2 = 1 and s ince A2C2 + C2 = 

C 3 , we find C3 = 1. Now us ing (2.5) again for n = 3 , with A3Ci = - C 3 , we 

find A3Ci = - 1 , and so on. A p a r t of the difference a r r a y i s a s follows: 

- 1 1 0 - 1 - 1 2 
0 1 - 1 - 2 1 

(2.7) 1 0 - 3 - 1 
1 - 3 - 4 

-2 - 7 
- 9 
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The corresponding table for the Bell numbers B and their differences, based 
on A B- = B is given in Table 1 of Finlayson [ l ] . He used the same method 
of construction, which is at times referred to as the Aitken array by Moser and 
Wyman [4 ] , In the appendix we give the Aitken ar ray for the C for 1 < n < 
21. 

3. RELATIONSHIPS BETWEEN THE BELL NUMBERS B , AND THE C 
n n 

It is well known (Riordan [5]) that the exponential generating function of 
the Bell numbers B is given by 

(3.1) J B ^ = exp (ex - 1) 
n=0 

Since the generating functions of 

B C 
b = —r and c = —r-n n! n n! 

a re reciprocals of each other, following Riordan [ 5] we could have defined the 
sequence {c } as the inverse sequence of {b }. From this property we can 
easily derive the following 

Proposition 5: 

m ( 3-2 ) 1 J \ k / B k C n - k = °9 n = 1 ' 2 ' " * ' w i t h Bo = co 
k=0 

A less obvious relationship between B and C is given by the following: 
Proposition 6: 

£ fih (3.3) L l i h V i r 1 ' n o 0 . 1 , 2 . -
j=0 
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Proof: Differentiating (3.1) with respect to x, we obtain 

- x k - i 
LBk-3bi)7= e X e x p < e X - 1 ) • 

k=l 

Multiplying this by the exponential generating function of C we obtain 

(H(l^) -' 
which implies that 

oo 

E (n) ZL = e
x 

al n! e 

n=0 

where 

< - £ (?hvn • 
as defined in the introduction. 

/ „ \ 

Now it follows that Bj = 1, h = 0 , l , 2 , - " , since 

oo 
n x v ^ i x 

e = L 1 ^ 
n=0 

is the exponential generating function of the sequence with unity in every place. 
A !dualT to proposition 6 can be stated as 
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Proposition 7: 

445 

(3.4) s(°bc 
n+l-j - 1 . n = 0,1,2,-

Proof. This follows along the same lines as that of Proposition 6, where 
we now differentiate the exponential generating function of the C . 

4. DETERMINANTAL REPRESENTATIONS OF C 

We noted in Section 3 that the sequences 

{", •j - m and (c } •W 
are inverse sequences as defined on page 25 of Riordan [5], On page 45, 
Riordan gives as a problem the representation of n number of the sequence 
{a1} as a determinant of the elements of the inverse sequence { a }. This 
says 

, / . v i i - n - 1 
a n = ( - 1 } a 0 a l 

a 2 

^ 

V i 

ao 
1 

a 2 

a n-• 2 

0 
ao 
\ 

Vs 
a a - a n 

n n-1 n-2 

( - l ) n a - n " 1 6 n (say). 

The following recursive relation for 5 can be shown, 

n-1 
5n = E <-!> 

k=0 

k o k o « 
a 0 a k + l n - k - l ' °0 

= 1 

Applying this result for the Bell numbers B , and C we will have 
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a) 

(4.1) 

(4.2) 

Propos i t ion 8: 

C 

n! 

b) 

<- l ) n 
"B. 

1 
1! 

B 2 
2! 

B 3 
3! 

B 
n 

n! 

C 
(-Dn - a 

Bo 

B l 
TT Bo 

B 2 B l 
2! 1! 

B -, 
n - 1 

ft=Tjl 

n - 1 

= V (-

... BJ 
B o B J 

n -2 1 
(57151 1! 

1 ) k B k + 1 

( - l ) n ^ n (say) 

k=0 

In Proposition 3, we have shown that 

'n+1 
3=0 V / 

n = 0,1,2,-

with C0 = 1. From this nonsingular system of equations, using Cramer 's rule, 
we can derive the following: 

Proposition 9: 

'n+1 (-1) 

(4.3) 

1 

1 1 

3 1 1 

a t) 
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The corresponding determinantal representation for the Bell numbers which 
seems to be due to Ginsburg [ 2 ] , is also quoted by Finlayson [ l ] . Gins burg 
[2] derived another determinantal expression for the Bell numbers (also quoted 
by Finlayson [l]) and the corresponding representation for the C-numbers is 
given by the following: 

Proposition 10: 

'n+1 (-1)" n+li 1 

1 
1! 

1 
2! 

1 
31 

1 
n! 

1 

1 

1 
1! 

1 
2! 

1 

rar 

0 

2 

1 

1 
1! 

1 
Tn̂ 2Fl 

0 

0 

3 

1 

0 

0 

0 

4 
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