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A sequence of numbers {Cn’ n=20,1,2, } is defined from its gen-
erating function exp (1 - &°). A series representation for Cn (which is anal-
ogous to Dobinski's formula), a relationship with the Stirling numbers of the
second kind, a recurrence relation between the Cn and a difference equation
satisfied by C, are obtained. The relationships between the Bell numbers and
{Cn} are also investigated. Finally, three determinantal representations for

Cn are given. The 'Aitken Array' for Cn, 1 <n £21 isgiven inthe appendix,

1. INTRODUCTION AND SUMMARY

While studying the moment properties of a discrete random variable
associated with the Stirling numbers of the second kind, CO L » we encountered
an interesting sequence of numbers. More explicitly, let X be a discrete

random variable with probability distribution

= i = ] i o= soe
(1.1) P{X = j} Un/ B, j = 1,2,°**,n
where

n

ZaJ =B, n=1,2,

n

=1
are called the Bell numbers. The kth moment of the random variable X is
given by

n

- K _ & )

(1.2) pxX) = ZJ On/Bn = B /B, (say);

=1
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(k)

and the first six values of B are given by

n
3 - B
n n
@ _
By = Bhn - By
2) _
Bn - Bn+2 - 2:Bn+1
(1.3) 3)
By = Buiz 3B T 0By * By
@ _
By = Bau - 4B s * 0Bn+2 * 4:Bn+1 * By
) _
B " = Biys = 9Bpag * 0B g * 10B 5 + 5B, - 2B
This led us to look for an expression for Br(lk) in terms of the Bell numbers
Bn+k’ Bn+k-1" Tyttt ,Bn of the form
k
(k) _ k
(-4 By =22 (i)ci Bpac-1
i=0
The first few Ci’ i=1,2,--- aregivenby Co =1, Cy = -1, C; =0,

C3=1, C4 =1, C5 =-2, Cg=-9, Cy = -9 and Cg = 50. In this paper we
will study some properties of the sequence {Cn}. In the next section, we give
an ad hoc definition of {Cn} in terms of the generating function exp (1 - eX)
and prove some properties. We also derive a relationship between Stirling
numbers of the second kind and the Cn' In Section 3, we will derive some
relationships between the Bell numbers and the Cn. In Section 4, we will ob-
tain some determinantal representations for the Cn. The proofs are closely
related to the proofs (due to several authors) in the case of Bell numbers as

summarized by Finlayson in his thesis [ 1].

2. THE NUMBERS GENERATED BY THE FUNCTION exp (1 - eX)
Definition: The sequence {Cn’ n=20,1,2,"" } is defined by its expo-

nential generating function,

(]
k
@2.1) E Cy %- = exp (1 - &)
k=0
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From the power series expansion of exp (1 - e*) we will give an infinite series
representation for Ck.

Proposition 1:

1]

@.2) Z( VT k

0,1,2,"

Proof: From the definition we note that C, is the coefficient of xk/k!

in the Maclaurin series expansion of exp (1 - eX).

]

exp (1 - e*)

E 1t xr/r!

o0 0
xkrk
= eZ Z K
r=0 k=0
[~] (=]
= e T = NE
k=0 r=0
which shows that
” T rk
C, = ez 0" I k =0,1,2,
r=0

We will use this series representation to obtain the relationship between the
Stirling numbers of the second kind Gg{ and Ck' We define O 8 =1 and O f{ =
0, k=1,2

Proposition 2:

k
- Jod
(2.3) C, = 1o, .

—
=t
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Proof. In terms of the jth differences of powers of zero, L\j(Ok), we

have, according to Jordan [3],

k
i
K zz(zj-)A(O)

_ 1F
Ck =T ]
w y* :
- -1 ry, ik
- o T EE T (5
r=0 j=0
) Al®)
=e (D Z] o))t
r=0
k -]
Al (0 IR e
38l (g eyt
j=0 r=j

k

R PN <
' i %)
;} 1! S5
]=

which proves the result since Aj(Ok) = j!ag-{

Customarily, Stirling numbers of the first kind are defined as numbers
with alternate signs, whereas Stirling numbers of the second kind are defined
as numbers with positive signs. The relation (2.3) for the Cn’ and the cor-

responding relation for the Bell numbers Bn’ given by

n 2
= 2%
§=0

suggest that the Stirling numbers of the second kind may also be defined with

alternate signs.
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Using proposition 1, we now obtain a recursive relation between the
C-numbers.

Proposition 3.

- k - ) -
(2.4) Chap = -E(j)cj K =0,1,-; Cq = 1.

Proof:

Q
Il

* Lk
ki1 = 020 CUT
r=1

* k
s+l (s +1)
e Do (VT B

s=0
o0 k
s+1 ;
-1 k

= ("')s! Z( j)SJ

s=0 j=0

k 0 5 j k
- k 1)7s’ _ k
--Z(j)eZ i E(j)cj :

j=0 s=0 j=0

In the next proposition we will show that Cn satisfies an nt][1 order dif-

ference equation. As before, let A denote the difference operator and let E
= 1+A, so that EJCO =Cp J= L2

Proposition 4:
n
n n-jfn
j=0

Proof. The first equality will be established by the binomial expansion
of (E - 1)n, and the second equality follows from proposition 1. For com-
pleteness, the proof is sketched on the following page.
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n
A%, = € - D®EC, = )™ Meigc
1 = € - DEC, Z(:)() . 0
in

n R it
= e Z -1 I;)Z -1)F 7 » from 2.2)

j=0 r=0
© n
—e Y )'r )N H-i(m)
B r! - j
r=1 j=0
” 1
r_
-1
- -eE?(;)m- -1 =-c .
r=1
The difference equation An'Cl = —Cn can be used on computing Cy,Cy,***,Cp

for small values of n. This computation can be arrangedin a triangular array

C; AC; Afc; Adc; Alcy
C, AC, A, A3C,

(2.6) C; AC3 A
Cy ACy

The first column gives us the value of C,, n = 1,2,3,*+, the second column
gives us the first differences, and the jth column gives us the jth differences
of Cn, n=1,2,3,-+« . This table canbe filled up as follows: Let us assume
that we know Cj = -1. Equation (2.5) for n = 1, with AC; = -C; enables
us to find C, = Cy+AC; = 0. Now using (2.5) again for n = 2, we find A2Cy
= -C, = 0. Since A%C; +ACy = AC, we find ACy = 1 and since A2Cy +C, =
C3, we find C3 = 1. Now using (2.5) again for n = 3, with A3C; = -C3, we

find A%Cy = -1, and so on. A part of the difference array is as follows:
-1 1 o -1 -1 2
0 1 -1 -2 1
2.7) 1 0 -3 -1
1 -3 -4
-2 =7

-9
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The corresponding table for the Bell numbers Bn and their differences, based
on AnB1 = Bn is given in Table 1 of Finlayson [1]. He used the same method
of construction, which is at times referred to asthe Aitken arrayby Moser and
Wyman [4]. In the appendix we give the Aitken arrayfor the Cn for 1<n<

21.

3. RELATIONSHIPS BETWEEN THE BELL NUMBERS Bn’ AND THE Cn

It is well known (Riordan [5]) that the exponential generating function of

the Bell numbers Bn is given by

o0
n
X _ X
(3.1) Z B I = exp(e - 1).
n=0

Since the generating functions of

Bn Cn
b = — and c_ = —
n! n!

n n
are reciprocals of each other, following Riordan [ 5] we could have defined the
sequence {cn} as the inverse sequence of {bn}. From this property we can
easily derive the following

Proposition 5:

n

3.2 ). (E)Bkcn_k =0, n=1,2,-"-, with By = Cp = 1
k=0

A less obvious relationship between Bn and Cn is givenby the following:

Proposition 6:

n

n _ -
(3.3) > <j)cj Bl = L n=0,1,2,
j:
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Proof: Differentiating (3.1) with respect to x, we obtain

m‘\ xk_1 _ X X
ZBk ) exp (€7 - 1) .
k=1

Multiplying this by the exponential generating function of C, we obtain

X X 0 x
ch T 2B Tnr) ~ ¢
j:i) k:l
which implies that
e n
m x _ x
2B i =
n=0
where
n
(n) _ n
By = 2 (5B
=0
as defined in the introduction.
Now it follows that B§n) =1, n=0,1,2,-*+, since

(=]
X Xn
=D 1ir
n=0

is the exponential generating function of the sequence with unityin every place.

A 'dual’ to proposition 6 can be stated as
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Proposition 7:

n
n _ = .
(3.4) P (J.)Bj Cpe1oj = 1 n=0,1,2,
=0
Proof. This follows along the samelines as that of Proposition 6, where

we now differentiate the exponential generating function of the Cn'

4. DETERMINANTAL REPRESENTATIONS OF Cn

We noted in Section 3 that the sequences

{b} = {%} and  {c } = {%}

are inverse sequences as defined on page 25 of Riordan [5]. On page 45,
Riordan gives as a problem the representation of nth number of the sequence

{a;l} as a determinant of the elements of the inverse sequence {an}. This

says
y = (R -n-1
an (-1) 2, a 2, 0
a a a,
a a2 al - ('—l)na(')n—15n (say) .
. a
0
8p-1 %n-2 -3 T B
an an—-l an—Z a1

The following recursive relation for Gn

5 k_k

n 02k+1 n-k-1° "0

can be shown,

6. =1.

Applying this result for the Bell numbers Bn’ and Cn we will have
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Proposition 8:

C B
i e W
21 1 0
_ n
(4.1) By B, B = (-1)7¢, (say)
BT 20 I
By
EE Bn—l Bn-z B
nf @©-1! @2)! T
n-1
C B
n n _ k “k+1
(4.2) b) 1" — = Z (-1) & §k-1 .
k=0

with Cy = 1. From this nonsingular system of equations, using Cramer's rule,
we can derive the following:

Proposition 9:

n
Cn+1 = (-1) 1 1

(4.3)
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The corresponding determinantal representation for the Bell numbers which
seems to be due to Ginsburg [2], is also quoted by Finlayson [1]. Ginsburg
[2] derived another determinantal expression for the Bell numbers (also quoted
by Finlayson [1]) and the corresponding representation for the C-numbers is
given by the following:

Proposition 10:

_ n+l
Cn+1 = (-1) 1 1 0 0 0
1
r 1 2 0 0
1 1
37 I 1 3 0
1 i 1
A S R
n
11 1 1
n! (@-1)! (-2)!
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