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1. INTRODUCTION

The cumulative distribution function, F(X), of the extreme value dis-

tribution is given by

-X
(1) Fx) = e , for =< x < o,

and the density function, f(x) = F'(), is obtained as
-x
@) ) = & ) for cw< x< .

The extreme value distribution has found a number of applications.
Cramer [2] derives (2) as an asymptotic density of the first value from the
top for certain transformed variates in a random sample of n observations
drawn from Laplace's and normal distributions. The distribution function (1)
was first used by Gompertz [3] in connection with actuarial life tables and
later on has been used extensively in the study of growth.

The purpose of this paper is (i) to find an explicit expression for the
moment generating function of the standardized extreme value distribution and
(i) to derive an orthogonal expansion (Type A series) from the extreme value
density in a manner similar to the way in which Gram [4] and Charlier [1]
derived an orthogonal expansion from the normal density by making use of the
Hermite polynomials which are orthogonal with respect to the normal density.
The orthogonal expansion requires the calculation of first eight standardized
moments of (2) which in turn involve the evaluation of the Riemann zeta func-
tion. This difficulty is overcome by using the tabular values of the Riemann

zeta function given by Steiljes [6].

2. MOMENT GENERATING FUNCTION

The moment generating function, Mx(u), of the density function f(x) is

488
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0 -
f ux - (x+e X)
e e

MX(u) = dx

—o0

which, on substituting s = e_x, becomes

3) Mx(u) = Of s %e Sds
=T@ - u

= 3 %)
k=0

where I‘(k)(l) is the kth derivative of the gamma function, I'(p), at p = 1.
This proves the following.

Lemma 1. The moment generating function of the extreme value density
f(x) is given by (3).

According to Jordan [5], the nth derivative of I'(p) at p =1 is

' d
() ™) = (-1)nzm cM(s, /2% ... (Sy/m)

where the summation is over non-negative integers dy, dy, **-, dn such that
dy +2dy +3dg +--+ +nd, = n Sk is the Riemann zeta function defined by

and C is Euler's constant which, correct to nine decimal places, is
0.577215665 .
If T8} and |1, denote the mean and variance of f(x), then (3) and (4)

give us
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Hi = C and Hy = 8, .

Defining z = x - C)/ '\/§E, we get the standardized extreme value den-
sity function

(5) g(z) = NS, e_[C+'\/-S_ZZ+e—(C+'\/SZZ) ], for -w < z < o

The moment generating function, M, (w), of g(z) is obtained as
uz,

MZ ) = Ele

= NSy @/

which, by Lemma 1, becomes

M@ =| Y /&) o m || T r“"u)(-u/«/S;)k/kz]
z h=0 k=0
(6) w
= Z . ur/r! ,
r=0
th

where @, is the r~ standardized moment of g(z) and
) r < s
(M a, = 3 nFa/sy™ 2(’;>cr‘31‘°’(1>
j=0

This completes the proof of the following:
Theorem 1. The moment generating function of the standardized extreme
value distribution g(z) is given by (6).

The first eight of the expressions in (7), using (4), are

Qi = 0
042 =1
a; = 285/NS)
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a, = (383 + 68,)/S}

a5 = (208,8; + 24S;)/NS]

ag = (1583 + 408} + 90,8, + 1208;)/S}

g = (210838, + 4208,8, + 5045,S; + 72087)/A/S]

@ = (10553 + 11208,S2 + 1260838, + 1260S; + 2688S,S;

+ 33608,8; + 5040S;)/S3

The values of Sk for kK = 2, 3, ¢, 70 have been computed by
Stieltjes [6] up to 32 decimal places. Using his tabular values, we have

S, = 1.644934067 S¢ = 1.017343062
Sy = 1.202056903 S; = 1.008349277
S, = 1.082323234 Sg = 1.004077356
S; = 1.036927755

The substitution of S's give the numerical values of a's as

ay = 0,000000000 a5 = 18.566615980
ay = 1.000000000 g = 91.414247335
a3 = 1.139547099 ap = 493.149891500
oy = 5.,400000000 ag = 3091.022943246

3. ORTHOGONAL POLYNOMIALS
If @, denotes the rth standardized moment of g(z), then, according
to Szego [7], the orthogonal polynomials qn(z) associated with the density

function g(z) are given by

1 0o 1 o a
n
0 1 asg ay @
1
8) qn(Z) =5
n-1
%1 % %1 %2 0 %2l
1 z z2 73 z
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where the leading coefficient of qn(z) is one and

1 ag a
n
0 1 a3 ay L
9) Dn =
an—l a'n an+1 an+2 T aZn—l
n an+1 C¥n+2 an+3 o aZn

The polynomials qn(z) have the orthogonality property that

s D /D for m =n
_ n n-1
(10) _;{ qm(Z)qn(Z)g(z)dz = { for m £n

Substituting for o's in (8), the polynomials qn(z), correct to six deci-
mal places, for n = 0, 1, 2, 3, and 4, are obtained as

golz) =1

qiz) = z

ay(z) = z% - 1.139547z - 1

as(z) = z% - 3.634938z2 - 1.257817z + 2495391

z) = z' - 7.557958z3 + 6.560849z% + 14.769958z - 3.348201 .

4. DERIVATION OF ORTHOGONAL EXPANSION

Suppose that a density function, h(z), can be represented formally by

an infinite series of the form

(11) h(z) = gz) E:‘o aa @ ,

where the qn(z) are orthogonal polynomials associated with the density func-
tion g(z).

Multiplying both sides of (11) by qn(z) and integrating from - to o,
we have, in virtue of the orthogonality relationship (10),
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°0

Dn—l
(12) a = D 0_0[ hz)q, (z)dz .

The reader familiar with harmonic analysis will recognize the resem-
blance between this procedure and the evaluation of constants in a Fourier
series.

The first five values of a's, given by (12), are computed as

ap = 1
a; = 0
ag = 0

ag = 0.0500572(B; - 1.139547)

a, = 0.0045512(B, - 7.557958B; + 3.212648)

th standardized moment of h(z).

where f . isthe r
Substituting for the a's in (11), we have
Theorem 2. The orthogonal expansion (Type A series) derived from the

standardized extreme value density g(z) is

h(z) = g(z)[1 + 0.0500572(8; - 1.139547)q3(z) + 0.0045512 (B,
- 7.557958B; + 3.212648)qy(z) + -+ ]
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