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The well-known observation of Zeckendorf is that every positive integer 
N has a unique representation 

N = u. +u. + • • • +u . , 

where 

(1) ij ^ 1 and i - - i ^ 2 for i 4= v < d , 

and ju {• is the Fibonacci sequence 

••• , 0 , 0 , 1 , 2 , 3 , 5 , 8 , 1 3 , - " 

defined by 

u = 0 for n 4 0 , 
n 

(2) { ui = 1 , u2 = 2, and 
u , - = u + u ., for n =̂  2 . n+1 n n-1 

Existence of such a representation follows from (2), and its uniqueness follows 
easily from the identity 

(3) u , - = 1 + u + u 0 + u , + • • • for n ^ 0 
n+1 n n-2 n-4 

The object of this note is to discuss very general methods for uniquely 
representing integers, of which Zeckendorffs theorem is a special case. I feel 
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that my results give a fairly complete description of the representations; they 
certainly extend the treatment of an earlier paper of the same name [5J. 

Here are some remarks on the notation which will be followed throughout 
this paper. We reserve the brackets j 8 * •} 9 (" • •) and [• • -J for sequences, 
vectors and matrices9 respectively* By V we denote the set of all vectors 
(ii,i2»e" • jid) of various dimensions d > 1, whose components ip are inte-
gers with 1 < ii < i2 < •a • ^ ifr Often we will write I instead of tiles' °"> 
i^) and M instead of fm 1 . Also {a | , n = 1,2,3,° 9° will denote any 
sequence of integers satisfying axiom 1. 

Axiom 1. The sequence is strictly increasing and its first term is 1. 
For conveniences we write a© or a(ii,i2»'8 ° 4d) f ° r the number 

a(I) = a ( i i , i 2 , 0 9 ' ,id) =a . +a. + - s - + a . . 
H x2 xd 

It will be noted that all small letter symbols stand for non-negative integers. 
In [_5j I discussed pairs ja }, {k \ which represent the integers accord-

ing to 
Definition 1. j a [, jk } represent the integers if, for each positive 

integer N there is one and only one vector I = (ij, i29 • " ,id) m V such that 
N = a(I) and 

(4) i^ + 1 - ip > k^ for 1 < v < d . 

Let us write h and k for ki and k2, respectively. Then it turns out ([JO* 
theorems C and D) that ja }, |k \ represent the integers if and only if 

(5) 0 < k - 1 < h < k = k^ for v > 2 , 

and | a J is the (h,k) Fibonacci sequence |v J defined by 

n for 1 < n < k , 
v - + v , for k < n < h + k, 

n-1 n-h k - h + v - + v , for n > h + k . n-1 n-k 

The Fibonacci sequence ju | has been defined by authors in various 
ways j such as 

(6) 
v = 
V = 

V = 
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. . . , 0, 0, 0, 0, 09 0, 0, 0, 1, 2, 3, 5, 8, 13, • • • , 
••• , 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, ' • • , 

and 

. . . , - 8 , 5, - 3 , 2, - 1 , 1, 0, 1, 1, 2, 3, 5, 8, 13, ••• . 

One can sometimes simplify an argument by changing from one definition to 
another. We chose to define ju [ by (2) in order to use (3). Sometimes it is 
more convenient to define (v ) by 

v = 0 for n < k* , 
n 

(6.1) v n = 1 for k* < n < 1, and 
v = = k - h + v - + v , for n > 2, n n-1 n-k 

where k* = 1 if h = k - 1 but k* = -k + 2 if h = k. 
In the sequel, when we define a sequence, we will only consider the argu-

ment on hand at the time. 
Next observe that the (2,2) Fibonacci sequence is the ordinary Fib-

onacci sequence ju }, n > 1, and if kp = 2 for all v then condition (4) be-
comes condition (1). Thus in [5] I generalized Zeckendorffs theorem by r e -
placing the constant 2 in (1) by a sequence jk J. Later, I replaced jk | by 
an infinite matrix M = [m 1 , where /x, v > 1, of non-negative integers 
m as described in definition 2. 

Definition 2. ja i,M represent the integers if, for each positive i n t e -
ger N there i s one and only one vector I E V such that N = a (I) and 

(7) i ^ . i ^ > m M _ „ t J , for 1 < * < M < d . 

I described all such pairs ja i, M to a splinter group of the 1962 International 
Congress of Mathematicians in Stockholm (see the programme). However in 
an effort to simplify my proofs, I made one further generalization as follows. 

Definition 3. ja J, W represent the integers, where W C V, if for 
each positive integer N there is one and only one vector I E W such that 
N = a(I). 
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There is very little one can say about ja },W as this definition stands, 
so with my eye on condition (7) , I make W satisfy axiom 2. 

Axiom 2. If 

( i i , i 2 , - - - ,id) E V; (j l 5J2>"*5je) € W; 1 < d < e 

and 

1p+l " 1p ~ J*>+l ~ ^v 

for 1 < v < d then 

(il9 i2, • • • , id) E W . 

This axiom merely says that if a vector is in W and we "cut its tail off" or 
"stretch" it , or do both things, it will still be in W. Important trivial conse-
quences of axiom 2 are the laws 

I ( i i , i 2 , - - - , id ) £ W<=>(ii + l , i 2 + l r - ,id + D ^ W and it > 1, 
{ and (Li,i2 , ' s # 4d - i » id) ^ W => ( i i , i 2 , 9 - 9 »id-i» id + 1 ) E w • 

If M = [m 1 is any matrix, and W is the set of all vectors I = ( i i , i 2 , , e o , 
id) satisfying (7), then clearly axiom 2 holds for W. Hence definition 3 with 
axiom 2 is more general than definition 2, which in turn is more general than 
definition 1. 

I will now state the fundamental theorem of all this work. 
Theorem 1. Suppose {a | , W represent the integers, W C V, and 

axioms 1 and 2 hold. Then for t = 1,2,3,° • • all the integers N such that 
a, < N < a,+ 1 , and only these integers, each have a representation N = a(I) 
with I = (ii,i2,* • • , id) in W and i , = t. 

It follows from the theorem that any part of a representation is a repre-
sentation. In other words, if 

Gi , i 2»"B
 9id) E w ; i < e < d 

and 
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• 1 < vt < v2 < • • • < v < d 

then 

( VS' '"'W E W * 
Also the theorem shows that the representations of the successive integers 
1,2,3,- • • change "continuously," in the same way as their representations in 
the binary scale do. All possible representations using only a j ^ , * " • >at are 
exhausted before a, , - is used. To determine the representation of a given 
integer N you find the suffix t such that a, < N < a, - , then the suffix s 
such that a < N - a. < a + - , and so on, 

Now suppose W satisfies axiom 2. Then clearly (1) E W, there is a 
least integer p such that (l,p) E W, and there is a largest integer q such 
that the vector (1,1," • • , 1) of dimension q is in W. One of the numbers p 
and q is 1 and the other is greater than 1. My proofs, of theorem 1 and the 
results below for representations under definition 2, all split into the two cases 
p = 1 and q = 1. I always establish a chain of lemmas, each of which in-
volves a number of complicated statements, and has a proof depending on nested 
induction arguments. One can gain some idea of the lengths of the proofs by 
inspecting [ s j . For this reason, I do not intend to publish any proofs in this 
paper. I have tried repeatedly, but unsuccessfully, to find analytic proofs. I 
think that such proofs would be elegant, and would at the same time settle my 
monotonicity conjecture below. 

An important result contained in the lemmas is the following: 
If N is an integer N > 1, and the representations of N and N + 1 are 

respectively 

N = a(ii , i2 , • •• 4d ) 

and 

N + 1 = (Ji9 J2>— »Je> 

then 
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1 < a(ji + 1, ja + l v » j e
 + W - a(ii + l , i 2 + l , - - - , i d + 1) < q + l . 

Notice the revelenee of (8) to this result. Moreover the result enables us to 
give bounds for the rate of growth of ja }, and these bounds are necessary 
in the proofs. Taking N = a, - 1 so that N + 1 = a. = a(t), we find that 

1 < a t + 1 - atti + l , i 2 + l , 8 - ° .id + D ^ q + 1. 

We can in fact say more than the above, and I will illustrate the account 
by starting to construct a pair ja }, W inductively. We must have aj = 1, 
and the vector (1) in W. We are free to have (1,1) in W or not. Suppose we 
choose not to have it in. Then we can choose to have (1,2) in W or not. Sup-
pose not. Then we are free to have (1,3) in W or not. Suppose we have it in. 
Then our construction could proceed as shown in Table 1. 

ai 
1 

a2 

- 2 

Table 1 
Construction of j a | , W when p = 3 

a5 

\ 

&4 

5 
5 

a6 

- • 1 2 19 
1 + 8 — • 1 + 12 
2 + 8 — - • 2 + 12 
3 + 8 r—•• 3 + 12 

\ ( l > ^ < ^ 8 ) \ l + 3 + 12 r -^ l 
V ^ I ^ g A W 5 + 12A—" 

^(l + 5 + 12 

In the table, a representation is circled if at the appropriate stage of the 
construction, we had freedom to admit or reject it. A representation is crossed 
out iff it is not admitted. A representation at the head of an arrow must be 
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admitted, or not as the case may be, by virtue of (8) or axiom 2, because the 
representation at the tail of the arrow was admitted or not. Notice that we had 
no freedom over the values of as or as» Also the representation 1+3+12 must 
be admitted even though it is not controlled by (8) and earlier representations. 
If 1+3+12 is rejected, then a7 = 16 and we have 17 = a(l ,7) = a(4,6) con-
tradicting the uniqueness of the representations. In general, for p > 1, when 
we have freedom over the value of a , (i.e. , we can accept or reject some 
representation N = a C L i ^ , - ' - , id) with i , = t - 1), if we choose the lower 
value for a. we will have freedom of choice over a, ,-. On the other hand, if t t+1 
we choose the higher value for a. we will have no freedom over a, - , a, ? , 
"*>af.+ o» and possibly over more te rms , and sometimes over all further 
te rms. 

A typical construction with q > 1 is shown in Table 2. 

Table 2 

Construction of j a | , W when q = 3 

a2 

^ 4 

—> 1+4 
> 1+1+4 
1+1+1+4 

4+4 
1+4+4 

1+1+4+4 
1+1+1+4+4 
—> 4+4+4 

1+4+4+A 

1+1+4+4+4 
^ ± 1 + 1 + 4 + ^ / 

•> ^ + 4 + 4 ^ 

a3 

-> 15 
-> 1+15 

-> 1+1+15 

15+15 

-> 15+15+15 

4+4+15+15+15 
l+4-i4+15+15+l£\ 

l+JJ^Mr+K+lB+15 
^+1+144+4+^^+15+15^ 

^^44+4^3:5+1^15 

a4 

-> 55 
~> 1+55 

-> 1+1+55 
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Whichever way the pair ja. }, W arise there will be a sequence j m \ 
of integers, 0 < mi < m2 < m3 < • • • , which may be finite or infinite, such 
that if we put 

(3) an = 0 for n < 0, 

then we have the identity 

(10) a . - = l + a + a + a + • • • for n > 0 , 
n+1 n n-mi n-m2 

This identity corresponds to (3). Moreover, if our use of the freedom of choice 
discussed above has a cyclic pattern, then jm j i s eventually periodic. It 
will then follow by subtracting equations (10) in pairs that high up terms in 
| a | satisfy a finite recurrence relation- For example, continuing the con-
struction of Table 1, let us use our freedom in column 3 ,4 ,5 , - • • according 
to the pattern; admit, no choice, reject, admit, no choice, r e j e c t , ' " . Then 
jm [ = 2 ,5 ,8 ,11 ,14 , ' • • , an arithmetical progression with common differ-
ence 3, and ja j is given by 

i a = 0 for n ^ 0, ai = 1, a2 = 2, a3 = 3, and 
a , . , = a + a 0 + a « - a 0 for n > 3 . 
n+1 n n-2 n-2 n-3 

The first 8 terms of | a } are 1, 2, 3, 5, 8, 12, 19, 30 and the next7 appear 
in (11.1) below. 

We can use the above facts to obtain bounds for any sequence j a | as 
follows. We define a sequence j b } which has the same construction as j a } 
to some particular stage, then from that stage on, whenever freedom arises 
we choose the largest (smallest) possible value for b , . The sequence jb } 
so constructed will satisfy a finite recurrence relation which we can use to 
evaluate the terms of jb J, and hence obtain upper (lower) bounds for {a J. 
As an example, let us find bounds for the sequence ja \ started in Table 1. 
If we admit as many representations as possible in the remainder of the con-
struction, we find that jm | = 2 ,5 ,7 ,10,12,15,• • • (first differences m -
- m are 3 , 2 , 3 , 2 , 3 , 2 , ' • •) and that j a } may be defined as 
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!

ai = 1, a2 = 2, a3 ~ 3, a4 = 5, a5 = 8, and 

Vran + an-2 + V4 for n - 5 ' 

This sequence is the most highly divergent one which star ts like Table 1. 
Again starting from Table 1, we this time reject as many representations 

as possible. Then {m } is the finite sequence 2,5 and 

I a = 0 for n < 0 

a ... = 1 + a + a 0 + a , for n > 0. n+1 n n-2 n-5 

This sequence is the most slowly divergent one which starts like Table 1. The 
first 8 terms of any sequence starting like Table 1 are 1,2,3,5,8,12,19,30. 
I will now show some of the terms which follow these for the bounds (12) and 
(13), and for the example (11). 

(12.1) 

(11.1) 

(13.1) 

a9 

47 

46 

46 

aio 

74 

72 

71 

Hi 

116 

113 

110 

ai2 

182 

175 

169 

aI3 

286 

273 

260 

&14 

449 

427 

401 

&i5 

705 

664 

617 

ai6 

1107 

1035 

949 

Let us now consider the matrix M of definition 2. If there are three 
fixed integers r , s , t such that 

m < m , ,. + m, with 1 < t < r and 1 < s, 
r , s r-t ,s+t t,s 

then we will say that the element m of M is redundant. We do so because J r , s 
if in some representation N = a(I) we have 

r+s " s+t ~ r-t ,s+t s+t s t ,s 

then automatically 

i , - i > m r+s s r , s 
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There is in fact no loss of generality in assuming that redundant elements take 
the largest possible value (which does not alter the representations under def-
inition 2). In other words (applying an extension of the above argument) we 
assume that 

m > m , ,, + m, for all 1 £ t < r and 1 < s . 
r , s r-t ,s+t t ,s 

We extend the definition of redundancy to rows, by saying that a row of M is 
redundant if every element of the row is redundant. If any one element of a 
row is not redundant then we say that the row is non-redundant. 

Next let us assume that | a }, M represent the integers. Then it turns 
out that the matrix M has only two kinds of row, namely "straight" rows like 

(a$asa9a9 • • «), 0 <. a 

and "bent" rows of the form 

(p9a9a9a9 • • •) where 0 <. ft = a - 1. 

If either type of row is non-redundant then every element a in it is non-
redundant. If a bent row is non-redundant then every succeeding row is r e -
dundant (the bent row is the last non-redundant row of M). Moreover, if a 
bent row i s non-redundant, and its element p is non-redundant, then it is the 
first non-redundant row of M, and if in addition p > 0 then it i s the very 
first row of M. It follows from these facts that if M has infinitely many non-
redundant rows, then all i ts rows are straight. 

If the row 

( m r , l ' m r , 2 ' m r , 3 ' * " > 

of M is non-redundant, then 

m* <_ m - <: 1 + m* , r r , l r 

where 
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m ; maximum | m 
l < t < r 

r - t , i+ t + m t , l 

This condition merely says that either m - i s redundant or it lays the weak-
r,± 

est possible new condition on the representations. Now we already know that 

m r , l - m r , 2 " m r , l + 1 

Hence it follows that (even if in n i s redundant), either HI 9 imposes the 
r,± r,4 

same condition as m - , or m 9 imposes the weakest condition on the rep-
resentations, which is stronger than that imposed by m - . 

r,± 
Satisfying the above rules in all possible ways produces all possible 

matrices M for which there is a sequence {a } such that ja }, M repre -
sent the integers. For example, the first corner of any matrix which starts 
with mil = 2 looks like one of the matrices in Table 3. 

2 2 2 - " 
4 4 4 -
6 6 6 • • • 

"2 2 2 
4 4 4 
6 7 7 

Table 3 

2 2 2 
4 4 4 
7 7 7 

2 2 2 
4 4 4 
7 8 8 

2 2 2 ••• 
4 5 5 ••• 
6 7 7 ••• 

2 2 2 •• ' 
5 5 5 - " 

2 2 2 
5 5 5 
7 7 7 

2 2 2 
5 5 5 
8 9 9 

2 2 2 
5 5 5 
7 8 8 

2 3 3 
5 6 6 
8 9 9 

Once the matrix M = fm 1 is given, the sequence ja j is determined 
by (9) and (10), provided | m „ | is derived from M as follows. If M has no 
bent row then j mA is infinite and 

mM = *V,i for 1 <. jtt. 
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On the other hand if M has a first bent row, and this row is the p row, then 
jm„} is finite with p terms given by 

m •fi mu 1 for 1 <. p, <. p . 

We get a simplification of (9) and (10) in the case when M has no bent row, but 
it has only a finite number of non-redundant rows. In this case, if the last non-
redundant row is the p , then jm I is periodic with period m. = m -. 
Hence not only (9) and (10) hold, but we also find by subtraction that 

(14) a ( 1 = a + a + a + • 
n+1 n n-Hii n-m2 

+ a n-in - + a ,- for n > m_. 
p - 1 n-m +1 P 

It is easy to see how relations (9), (10), and (14) generalize the definition (6) 
vth 

Jh 
of the (h,k) Fibonacci sequence. 

When we know that all rows of M after the p u u row are redundant, we 
usually remove them from M. Then M has order p X oo instead of oo x oo. 
However, the fact that M has order p X oo does not necessarily imply that 
the p row is non-redundant. 

The bounding sequences (12) and (13) which we found earlier are in fact 
the sequences ja I for the matrices 

M 2 2 2 2 
5 5 5 5 and M = 2 2 2 2 

5 6 6 6 

respectively. In these cases, our constructive process of Madmitting (rejecting) 
as many representations as possible" is equivalent to saying, "let all rows of 
the matrix after the 2nd be redundant. " The sequence (11) corresponds to the 
oo x oo matrix 

M = 

11 11 11 11 ••• 
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With this matrix, a vector (ii,i29• • • ,i&) satisfies condition (7) iff (i) we have 
iv+1 - iv > 2 for 1 <. v < d, and (ii) if 1 < TJ < 0 < d and 

Vl " S = W ~ *0 = 2 

then there is an integer X such that rj < A < 0 and i - - i > 4. 
It has long been known that the Fibonacci sequence ju \ can be obtained 

from Pascal 's triangle. The triangle is set out on the lattice points of the first 
quadrant of the (x,y)-plane. Then one draws a family of equispaced parallel 
lines on the triangle, choosing the slope and spacing of the lines, so that the 
sum of all the numbers of the triangle, whose lattice points lie on the n line 
of the family, is the n term u of the sequence. In 1959, I observed that 
the (h,k) Fibonacci sequence jv f could be obtained in the same way, pro-
vided that when h = k - 1 the first row (1 ,1 ,1 , - • • ) of the triangle is r e -
moved from the triangle ([6J theorem 8). 

Harris and Styles defined sequences by means of Pascal 's triangle in [9J, 
and discussed the properties of their sequences. Suppose Pascal 's triangle 
lies on the lattice points of the first quadrant of the (x,y)-plane. Then for p 

> 0, q > 0 they let u(n,p»q) be the sum of the n term in the first row 
(1 ,1 ,1 , • • •) of the triangle and those terms of the triangle which can be reached 
from it by taking steps (x,y) —> (x - p - q, y + q). When q = 1, we have 

u(n,p, l ) = V - p + i f o r n = 0, *!> ±2, ••• 

where jv J is the (p+l,p+l) Fibonacci sequence (6.1). 
Now suppose that M, ja } represent the integers, and that all rows of 

M after the p are redundant. Then the terms of |a \ can be obtained from 
th a p + 1 dimensional Pascal 's triangle. The n term of |a n [ is the sum of 

all the numbers of the generalized triangle which lie on the n number of a 
p-dimensional family of equispaced parallel hyperplanes. I will give the de-
tails for p = 2 and the second row non-redundant. The reader will immedi-
ately see the result for general p . With slight modifications, the method can 
be applied to a wide class of sequences satisfying finite recurrence relations. 

When p = 2 and the second row is non-redundant, the matrix M is of 
the form 
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fa a a a • • • 
M = [fir y y . . . 

where 

0 < 2 t f < / 3 < 2 a + l < y and /3 < y < /3 + 1 . 

The second row of M could be either straight or bent. Also the sequence 
{an} is given by 

a = 0 for n < a* , 

(15) ( a = 1 for a*< n < 1 , 
anV^^an + V, + Vnl for n - X ' 

where or* = l i f / 3 = y - l but a* = -a + 1 if /3 = y . 
Notice that when a = 2 and /? = y = 5 then we get back to the sequence 

(12) again. 
We now define our 3-dimensional Pascal1 s triangle. In other words, we 

define an integer-valued function 7r(x,y9z) on the 3-dimensional lattice by the 
relations 

0 if x < 0 or y < 0 or z < 0, 
7r(x,y,z) = { 1 if x = y = z = Q9 

7r(x- l ,y ,z) +7r(x ,y- l ,z )+w(x,y ,z-1) otherwise 

It is easy to see that Pascal 's triangle appears on each of the three planes 
x = 0, y = 0 and z = 0. My result is that the n term of ja J of (15) 
is the sum of all the values of 7r(x,y5z) (whose lattice points lie) on the plane 

x + (a + l)y +yz = n + t f - l + ( y - P)a 

provided that if y = P - 1 we remove the x-axis (i. e. , if y = p - 1, we r e -
place TT by rr* where 7r*(x,y9z) = 0 if y = z = 0 but ir* = rr otherwise). 
The proof is by induction. 

Next let r be a fixed integer r > 1. Let ( i j ^ j * •8 jitf) E W iff 
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W"1^ * X 

vn-1 for 1 < v < d - r , and put b = (r + l ) n for n > 1. Then {b | , W rep-
resent the integers in the familiar scale of powers of r + 1, and the order of 
the terms in | b | is immaterial. Suppose, on the other hand, that 

( i 1 , i 2 , - - - , id) E W 

iff 

W - K* 2 

for 

1 < v < d, 

and jb }, W represent the integers. Then as I showed in [ l ] axiom 1 must 
hold, and in fact | b } = | u | . 

I would now like to state my monotonicity conjecture, which extends a 
conjecture that I made in [5 j . 

Conjecture. Suppose |b }, W represent the integers and axiom 2 holds. 
Then either axiom 1 holds for {b | or jb } is s ° , s 1 , s 2 , # " in some order 
and s is an integer s 2. 1, 

Another result which gives weight to the conjecture is 
Theorem 2. Let r > 1 be a fixed integer. Let M be the matrix whose 

only non-redundant row is its r row, and this r row is (0,1,1,-••)« If 
{b }, M represent the integers then axiom 1 holds for {b }. Moreover, 
bi = 1 and b , - = (r + l)b + 1 for n > 1. 1 n+1 n 

The first example of a pair | a j , W which is not equivalent to a pair 
{a | , M was given by my student A. J. W. Hilton in 1963. He took a fixed inte-
ger r > 4, and let W be the set of all vectors I of V such that 

1 < ii < i2 < — < iq 

and, for 1 < v < d, if i - - i = 1 then ip - i - > r. Then he put 
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w = 1 for n < 1 n 
w2 = 2 

w = w - + w o + w for n > 3, 
n n-1 n-2 n-p 

With these definitions, we have 
Theorem 3 (Hilton), jw | , W represent the integers but are not equiva-

lent to any system | b J-, M. 
I have tried to find an elegant classification for all sets ja I, W. How-

ever, I have so far been unable to improve on the constructive method which I 
have described for obtaining all sets ja J, W. 

In this paper, I have been concerned with unique representations. It would 
be interesting to know what happens if the uniqueness condition was dropped, 
and perhaps only sufficiently large numbers N had to have a representation 
(N > constant). Results in this direction have been found by Brown, Ferns , 
Hoggatt, King, and others [ i j , [ 2 j , [ s j , [?J, and [8j, respectively. I feel 
that the results I have given in this paper are complete in the same sense as 
N. G. de Bruijn!s discussion is complete for representations 

N = HSi + S2 + S3 + • • • , 

where each s. belongs to a finite or infinite set S. of non-negative integers 
containing 0. In a paper [4j which is now classical, he showed that all such 
systems are what he called "degenerate British number systems. M 

Some results have been obtained concerning representing all integers in 
some interval by Harr is , Hilton, Hoggatt, Mohanty, Styles, myself and others 
|_6J, [9J. However, the problems concerning representations for all the inte-
gers 0, ±1, ±2,* • • are much more difficult and only a few special theorems 
are known. 
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