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Diatoms are a type of one-celled algae whose unusual reproduction cycle 
gives rise to an interesting problem in number theory. Sparing the morpho-
logical details, the cycle can be described as follows. Each diatom when it r e -
produces (by cell-division) gives rise to one just like itself, and one a size 
smaller. This process continues to produce smaller and smaller members of 
the population until a size is reached where cell-division is no longer physio-
logically possible. These smallest members then grow until they become as 
large as the first size, and then begin reproducing normally. 

The problem is to determine U , the population on the n generation 
as a function of both the number of sizes possible, and the growing period. 

Let (m + 1) be the number of sizes possible including the growing size, 
and let r be the number of generations it takes for the smallest size to be-
come mature. 

We will show that 

m °° 

j=l i=0.\ ' 

and that U satisfies the following m + r) order linear recurrence relation: 

OO 

E <-»kteW 
k=o \ / 

<2> X ( - i n . l U , „ _ k ) =Un_(m+r) 

Diagram 1 illustrates the derivation of equation (1). The n horizontal 
row represents the population on the n generation. In the first group of col-
umns, each entry is the sum of the two entries north and northwest of it. This 
is because for 1 < k < m + 19 the k and (k - 1) sizes each give rise to 
a k size, and because in the (m + 1) column we have an individual either 
growing, or mature; in either case contributing one to the same column in the 
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next genera tiona Clearly binomial coefficients are an efficient representation
since

(3)

In the succeeding groups of columns (only the second group is shown) the
same procedure is followed except for the first column of the group. This col-
umn represents the second size members which arise from the new first sizes
in the last column of the previous group of columns and from the second sizes
in the past generation. Thus each element in the first row here is gotten by
adding the element north of it to the element (r + 1) places above it and in the
last column of the previous group.

Continuing in like manner, we see that in the (i + 1)th group of columns
on the nth generation, the top index of the binomial coefficients is n - ir,
and the bottom index runs from i(n) + 1 to (i + 1) (m). This gives equation
(1) since all the terms in (1) are zero as soon as the bottom index becomes
larger than the top.

We now derive the recurrence relation (2) using the expression in (1) for
U (m, r). The indices in the double sums on the right will always be from j =n
1 to m , and i == 0 to 00.

From (1) and (3) we have:

(4) Un 1+���� - ��� = 1 ��������������. . lID + J .... 1m + JJ 1 J 1 .

In- i - i r)'���+ \. . 11m + J - I

therefore

(5)

(6 )

Now by induction on t we show:

00

'" (_l)k (t) ULA k n-k
k==O

'" ���� - t.- ir)
LJ LJ lID + J - t
j i
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(7) - EZ 
J 

^ [ ( im + j - t j + (im + j - t - 1 j j • 

Equation (5) shows that (6) holds for t = 1, now assume it holds for t; 
then replacing n with n - 1 in (6) and subtracting from (7), we have: 

oo oo . 

E <-1)k(t) <v* - E <-»t vk-: - ZZL- •*,+-\;'i))-
k=o V / k=o v ' J x \ / 

£ E (s.%V-Ii;?) -».+ E[<-»kQ v k * < - 4 - K -

k=l v ' k=0 x I 

hence (6) holds for (t + 1) and therefore for all t > 1. 
Now letting t = m in (6), we have: 

S^0'--??(t.----i) 
m =o 

= V* V*f n _ (m + r) - (i - l ) r \ 
Z-J Lu\ (i - Dm + j / 
j=l i=0 N ' 
m , v m » 

ZM n - (m + r) + r \ V ^ V"* / n - (m + r) - (i - l ) r \ 

/ I j - m )+2~i2J\ < i - l ) m + j j 
j=l X ' j=l 1=1 V ' 

m °° / \ 
y ^ y ^ / n - (m + r) - irl 
L—J ' J \ im + j / j=l i=0 

= U n- (m+r) 
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which establishes (2). 
Note that from the diagram we get the following (m + r) initial condi-

tions on U (m,r): 
n 

k=0 x ' 
1 < n < (m + r) , 

and also that U (1,1) = F l 0 where F is the n Fibonacci number. In-n n+2 n 
deed, the diatom problem is a generalization of the famous Fibonacci rabbit 
problem. 

PART II - GENERATING FUNCTIONS 

We may find the generating function for U (m,r) by using the recursion 
above, however it is simpler to calculate the generating functions for each 
individual size and then add them. 

We use the following notation, with m and r fixed. 

a(i,n) = total size i in n generation, 1 < i < m. 
b(j,n) = total of growing size which are j generations old in the n 

generation, 0 < j < r - 1. 

Then we have, 

a(i,n) = aft - l , n - 1) + a(i,n - 1), a(i90) = 0, 2 < i < m; 
a(l ,n) = b(r - l , n - 1) + a ( l , n - 1), a(l,0) = 1 . 

(3) 
b(j,n) = b(j - l , n - 1) , b(j,0) = 0, 1 < j < r - 1; 
b(0,n) = a(m,n - 1) , b(0,0) = 0 . 

Now we let 

oo oo 

2 a(i,n)xn B(j,x) = / ^b(j,n)xn , (4) A(i,x) 
" n ^ n=0 
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which 9 combined with (3), gives 

A(i,x) = xA(i - l,x) + xA(i,x)5 2 < i < m 
A(l,x) = xA(l,x) + xB(r - l ,x) + 1 . 

(5) 
B(j,x) = xB(j - l ,x) , 1 < j < r - 1 
B(0,x) = xA(m,x) . 

Solving (5), we get 

, m - l / \ m - l 
>x ) = (j^f'1 W'* - (i^)m" ( T ^ B(r" ljX) +r^)' 

(6) 

(7) 

m-1 
JB(0,x) + — 

(1 - x) 

m+r m-1 
x A(m,x) + X 

/t an /n xm 
(1 - x) (1 - x) 

m-1 
A(m,x) = ,., xm m+r 

(1 - x) - x 
/ l - x\mA 

A(i , x) = A(m,x) ( x I 

B(j , x) = A(m,x) x^+ 

Now we define P(m, r;x) as 

oo oo / m r - 1 
P(m,r;x) = y ^ U n ( m ? r ) x n = / J / /*(i>n) + / ^b ( j ,n ) )x n 

n=0 n=0 \ l = l j=0 

m r -1 
,x) 

"FT i=0 
VjA(i,x) +y^B(j?^ 

2} / m . r 
A(m,x)l> Lj^ + > x3' 

(1 - x ) m - x m , x m ( l - x ) r 

((1 - x ) m - x m + r ) ( 2 x - 1) ((1 - x ) m - x m + r ) ( l - x) 
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It is of interest to know whether or not the polynomial 

p(x) = (1 - x) - X 

has any repeated roots. To show that there are none, we set 

t / \ /i x m - l . , x m+r-1 
pf(x) = -m(l - x) - (m + r)x 

and p(x) equal to zero simultaneously, and note that this implies 

m + r 
x = 

This cannot be a root of p(x) since the only possible rational roots of p(x) 
a re ±1 . 

Let cxl9a29 • • • , a. be the roots of p(x) where \a. < la. . Then 

/

m+r 
n (x - a.) 
i=l X 

where g(x) is a polynomial. This expressionhas the partial fraction expansion, 

m+r Q 

P(m'r;x) = J 2 TT^xT^) 
i=i 

hence 

P(m,r;x) 

00 ni+r t v „ 

n=0 i=l V V 

n 
x , 

therefore 
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m+r 
(8) Un(m,r) 

From (8) we see that 

£ *)" 

Un(m,r) = 0 (w) 
We know that for r = 0, U (m,0) = 2 since then we have ordinary cell di-
vision. Also, for r > 0., U (m,0) grows slower than 2 because of the time 
lag. Indeed, we now show that for r > 0, at is real and 1/2 < at < 1. 

Since 

m+r 
(1 - a.) = a. r 

we see that if a. is real , it must satisfy both 1 - a. = y and 

m+r 
r 

a* = y 

In Fig. 1 we see that for any m and r > 0, there is always a positive real 
solution, a, to these simultaneous equations where 1/2 < a < 1. Also, 
when m + r is even, there is a large (< -1) negative solution. We now show 
that a is actually the smallest possible in absolute value. We note that for all 

1 - a.\ 
i 

m+r 
a.\ r 

1 

Hence 1 - a. must lie on the intersection of the circle about the origin with 
radius 
[Continued on p. 463. ] 

* * * * * 


