where

1970]

$$V_1 = 3$$
, $V_2 = 7$, and $V_{n+1} = V_n + V_{n-1}$.

PROBLEMS

1. Determine the polynomial for which f(1) = -4; f(2) = 22; f(3) = 100; f(4) = 200; f(5) = 532; f(6) = 946; f(7) = 1532; f(8) = 2320.

2. The following sequence of values correspond to terms T_1 , T_2 , etc. of a sequence which is the sum of a polynomial and a Fibonacci sequence: 0, 4, 12, 29, 53, 87, 132, 192, 272, 381. Determine the polynomial and the Fibonacci sequence components.

3. The values: 13, 72, 227, 526, 1023, 1784, 2899, 4506, 6839 include a polynomial component and a geometric progression component. Determine the general form of the term of the sequence.

4. The sequence values: 4, 14, 12, 22, 20, 30, 28, 38, 36, \cdots combine a polynomial and a geometric progression. Determine the general form of the term of the sequence.

5. The sequence values: 7, 19, 45, 109, 219, 395, 653, 1017, 1515 have a polynomial and a Fibonacci component. Determine the general form of the polynomial and find the Fibonacci sequence.

(Solutions to these problems can be found on page 112.)

CORRECTION

Please make the following changes to "Remark on a Theorem by Waksman," appearing in the Fibonacci Quarterly, October, 1969, p. 230.

On line 1, change "Q = Q^{*} \cup {1}" to "Q^{*} = Q \cup {1}"

On line 9, change "[2, p. 62]" to "[2, § 62]"

On line 18, change $\forall \notin V \cap Q''$ to $\forall \notin V \cap U''$

On line 20, change 'a prime" to 'an integer $p \in Q^{\star}$."