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1. INTRODUCTION AND SUMMARY 

The Fibonacci numbers F may be defined by the recurrence relation 
Fn = Fn-1 + Fn-2 f o r n - 2 w i t h F° = ° a n d F l = le T h e f a c t o r s o f t h e 

first 60 Fibonacci numbers were published by Lucas (with only two errors) in 
1877 [1] , and recently a table of factors of F for n < 100 has been pub-
lished by the Fibonacci Association in [.2], 

If F is the smallest Fibonacci number divisible by the prime p, then 
z = z(p) is defined as the entry point (or rank) or p in the Fibonacci sequence; 
furthermore p divides F if and only if n is divisible by z(p), and there 
are rules for determining what power of p will divide such an F ([3] , p« 
396). 

To find the entry point z(p) for a given p , we can generate the Fib-
onacci sequence modulo p until we obtain an element F = 0; on a computer 

z 
this process involves only additions and subtractions, and we work throughout 
with numbers less than 2p8 Tables of entry points have been published by 
Brother U. Alfred [ 4 ] , and have also been inverted to give p as a function of 
z. We extended the inverted table up to p = 660,000 by restricting our search 
to the first 256 Fibonacci numbers, L e. , to z < 256, and by this means we 
were able to give complete factorizations of 36 numbers F with n > 100 in 
[ 5 ] . 

In the present paper we shall adopt the alternative approach of fixing z 
and searching for primes for which this z is the entry point In Sections Sand 
4 we shall prove the following theorems: 

Theorem 1. If z is the entry point of a prime p > 5 then 
(i) if z is odd, we have either 

(a) p = 4rz + 1 and p = 1, 29, 41 , 49 (mod 60), 

or (b) p = (4r+2)z - 1 and p = 13, 17, 37, 53 (mod 60); 
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(ii) if z = 2 (mod 4) , we have 

p = rz + 1 and p = 1, 11 , 19, 29 (mod 30); 

(iii) if z = 0 (mod 4) , we have e i the r 

(a) p = 2rz + 1 and p = 1, 29, 4 1 , 49 (mod 60), 

o r (b) p = (2r + l )z - 1 and p = 7, 23 , 4 3 , 47 (mod 60), 

where in al l e a s e s r i s an in teger . 

T h e o r e m 2. 2z(p) divides p ± l if and only if p = 1 (mod 4). 

In Section 5 we desc r ibe how we have used Theo rem 1 a s the ba s i s of a 

computer p r o g r a m for factorizing Fibonacci n u m b e r s , and in Section 6 we give 

some numer ica l r e su l t s obtained in this way. 

2. SOME PRELIMINARY RESULTS 

The Lucas numbers L a r e defined by the same r e c u r r e n c e re la t ion a s n J 

the Fibonacci numbers F , namely L = L - + L 0 for n > 2 , but with 
n9 J n n - 1 n-2 -

L 0 = 2 and L j = 1. We shall r equ i r e the following well known ident i t ies : 

(1) F 0 = F L 
2n n n 

(2) F 2 - F - F ^ = ( - l ) n _ 1 

n n - 1 n+1 

(3) L2 - L -L J.1 = ( - l ) n 5 . 
n n - 1 n+1 

When p i s an odd p r i m e and m i s an in teger p r i m e to p , t heLegendre 

symbol (m/p) i s defined to be +1 if m i s a quadra t ic res idue of p , i . e . , 

if the equation 

x2 = m (mod p) 

has a solution in in tegers ; whe rea s if the re is no such solution, (m/p) is de -

fined to be - 1 . It can be shown (ref. 6, Chap. 6) tha t , for p > 5, 

(4) (-1/p) = 1 if and only if p = 1 (mod 4) 
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(5a) (5/p) = 1 if and only if p = 1 o r 9 (mod 10) 

(5b) (5/p) = - 1 if and only if p = 3 o r 7 (mod 10) 

(6) (-5/p) = 1 if and only if p = 1, 3 , 7, o r 9 (mod 20) . 

It can a lso be shown (e .g . , using T h e o r e m 180, ref. 6), that if z is 

the Fibonacci en t ry point of p s then (for p > 5) 

(7) p - (5/p) = 0 (mod z) . 

This l eads to 

L e m m a 1 

(8a) p = qz + 1 if p = 1 o r 9 (mod 10), 

(8b) p - qz - 1 if p = 3 o r 7 (mod 10) , 

where z i s the en t ry point of p and q is an in teger . 
We shall fur ther use the fact that if p i s a p r i m e g r e a t e r than 5, then 

(9) p E 1, 7, 1 1 , 13, 17, 19, 23 , o r 29 (mod 30) , 

s ince o therwise p would be divisible by 2 , 3 , o r 5. 

If we reduce the Fibonacci sequence (for which F 0 = 0, F1 = 1) modulo 

p , we obtain a per iodic sequence. The per iod k = k(p) i s the sma l l e s t in t e -

g e r k for which 

F, = 0 (mod p) and F, - = 1 (mod p) . 

It i s c l e a r that the en t ry point z(p) will divide the period k(p), and the fol-

lowing r e s u l t s have been proved by Oswald Wyler [ 7 ] : 

(10a) k(p) = z(p) if z(p) = 2 (mod 4) , 

(10b) k(p) = 2z(p) if zip) E 0 (mod 4) , 

(10c) k(p) = 4z(p) if z(p) i s odd. 



26 FACTORIZATION OF FIBONACCI NUMBERS [Feb. 

We shall also use a result proved by D. D. Wall (ref. 8, Theorems 6 and 7) , 
namely 

(11a) k(p) divides p - 1 if p = 1 or 9 (mod 10), 

(lib) k(p) divides 2(p + 1), but not p + 1, if p = 3 or 7 (mod 10). 

3. PROOF OF THEOREM 1 

To prove Theorem 1 we have to consider separately the three cases of 
z odd, z twice an odd integer, and z divisible by 4, where z = z(p) is the 
entry point of a prime p > 5. 

(i) We first consider the case of z odd and prove 
Lemma 2. If z is odds then p = 1 (mod 4). 
To prove this, take n - 1 = z in the identity (2); then n - 1 is odd, 

and (by definition of z) p divides F - , so that we have (F )2 = -1 (mod 
it follows, as stated in (4), that p = 1 (mod 4). 

Combining this result with that of Lemma 1 we see that when z is odd 
we have either 

(a) p = 4rz + 1 and p = 1 or 9 (mod 10), 
or 

(b) p = (4r + 2)z - 1 and p = 3 or 7 (mod 10). 
Part (i) of Theorem 1, as stated in the introduction, then follows by using the 
result (9) and selecting those residues modulo 60 which satisfy p = 1 (mod 4). 

(ii) Next, we consider the case where z = 2s and s is an odd integer. 
In this case p divides F~ but not F , so that it follows from the identity 

4S S (1) that p divides L . Taking n - 1 = s in the identity (3) we have L2 = 5 s n 
(mod p), and it follows, as stated in (5a), that p = 1 or 9 (mod 10). Using 
this result together with Lemma 1 we obtain 

Lemma 3. If z is twice an odd integer, then 

p = qz + 1 and p = 1 or 9 (mod 10) . 

Part (ii) of Theorem 1 now follows by using the result (9). Moreover, Lemma 
3 establishes the following result which was conjectured by A. C. Aitken (pri-
vate communication to R. Rado in 1961): 
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Theorem 3a If p is a prime then d = 1 (mod p) for any divisor d of 
L . 

P 
(iii) Finally we consider the case where z = 2s and s is an even inte-

ger. As before, it follows from (1) that p divides L , but inking n - 1 = s 
s 

in (3) we now obtain L^ = -5 (mod p) since n is odd* Using the result (6) we 
deduce that p E 1, 3, 7, or 9 (mod 20), and combining this with Lemma 
with the result (9) we have that when z = 0 (mod 4) either 

(a) p = qz + 1 and p 5 1, 29, 41 , 49 (mod 60) , 
or 

(b) p = qz - 1 and p = 7, 235 43, 47 (mod 60) . 

Since the result (10b) applies to these cases, the period k is now given by k 
= 2z. Applying (11a), we see that in case (a), q must be an even integer, say 
q = 2r. Similarly, applying (lib) we see that in case (b) q must be an odd 
integer, say 2r -1- 1. This establishes part (ii) of Theorem 1. 

In proving Theorem 1 we have used only the identities (1), (2) and (3). It 
is interesting to note that, although we applied similar techniques to many other 
identities, these did not lead to any further significant results. 

4. PROOF OF THEOREM 2 

To prove that for p > 5, 2z(p) divides p - (5/p) if and only if p = 1 
(mod 4), we have to consider the three cases as before. 

(i) When z is odd, we have by Lemma 2 that p = 1 (mod 4); we also 
know from (7) that z divides p - (5/p), which is an even number, and hence 
when z is odd 2z divides p - (5/p). 

(ii) When z is twice an odd integer, we have by Lemma 3 that 

p = qz + 1 and p = 1 or 9 (mod 10) . 

It follows that 2z divides p - 1 if and only if q is even, and this condition is 
equivalent to p = 1 (mod 4) in this case. 

(iii) When z = 0 (mod 4), we have already proved (at the end of Section 3) 
that either 
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(a) p = qz + 1 with q an even in t ege r , 

o r 

(b) p = qz - 1 with q an odd in teger . 

In case (a) we have p = 1 (mod 4) and 2z divides p - 1, whe reas in case (b) 

we have p = 3 (mod 4) and 2z does not divide p + 1. 

This comple tes the proof of T h e o r e m 2. 

A r e s t r i c t e d form of this t heo rem, namely 2z(p) divides p ± 1 if p = 

1 (mod 4) , has recen t ly been proved by R. P . Backs t rom ( [ 9 ] , l e m m a s 4 and 

6). 

5. APPLICATION TO THE FACTORIZATION OF FIBONACCI NUMBERS 

Cons ider now the p rob lem of finding the p r i m e fac tors of F for a given 

n. If n i s not p r i m e , then F will have some i m p r o p e r fac tors p whose 

en t ry points z(p) divide n. Given n in the range 100 < n < 200, i t i s a 

s imple m a t t e r to cons ider al l the d iv i so r s d of n and use the known fac tor -

izat ions of F , for d < 100 (as given in [2 ] ) to l i s t a l l the i m p r o p e r fac tors 

of F . The remain ing fac tors p will then be p r o p e r fac tors such that z(p) = 

n , and these m u s t satisfy the conditions of Theorem 1 with z = n. 

Consider f i r s t the case of n odd. Our computer p r o g r a m ca lcula tes F 

and then divides i t in turn by al l the i m p r o p e r fac tors of F (with suitable 

mul t ip l icat ies) which a r e supplied a s data. We a r e then left with a quotient Q 

whose fac tors p m u s t have z(p) = n. To de te rmine these f a c t o r s , we l e t the 

computer genera te numbers N (not n e c e s s a r i l y pr ime) satisfying the condi-

tions for p in Theo rem l(i) with z = n. These number s N in genera l fall 

into 8 res idue c l a s s e s modulo 60n, but it was found that when n i s divisible 

by 3 , 5, o r 15 the number of r es idue c l a s s e s goes up to 12, 10, o r 15, r e -

spectively. F o r each n these res idue c l a s s e s w e r e de te rmined by the c o m -

pute r in accordance with T h e o r e m 1 and the number s N we re then genera ted 

sys temat ica l ly from the lowest upward. F o r each N the p r o g r a m t e s t s 

whether Q i s divis ible by N, and if i t i s i t p r in t s N a s a factor and r e -

p laces Q by Q / N . Any factor N found in this way will be a p r i m e , for if 

not , N would be the product of fac tors which should have been divided out 

from F o r Q a t an e a r l i e r s tage of the p r o g r e s s . F inal ly , when N b e -

comes sufficiently l a r g e for N2 to exceed the c u r r e n t value of Q , we can 
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stop the process and conclude that Q is prime; for if not, we would have Q 
= Nj[N2 < N2 which implies that Qn has a factor smaller than N, and any 
such factor would have been divided out at an earlier stage. 

In the case of n even, say n = 2m, we can proceed slightly differently 
on account of the identity 

FQ = F L 2m m m 

The computer program now generates L and our object is to factorize this. 
We need only supply as data those improper factors of F which do not also 
divide F , and dividing L by these factors we obtain the quotient Q . 
According as -|n = m is odd or even we use Theorem 1 (ii) or 1 (iii) to gen-
erate numbers N satisfying the conditions for p when z = n = 2m. It was 
found that these numbers N in general fall into 8, 10, or 12 residue classes 
modulo 30n5 though in some cases 20 and even 30 residue classes occurred. 

6. NUMERICAL RESULTS 

A program on the lines described above was run on the Elliott 803 com-
puter at Reading University, using multi-length integer arithmetic. In addi-
tion to the factorizations listed by us in [5], the following further factoriza-
tions were obtained (the factors before the asterisk being improper factors): 

F103 = 519121 x 5644193 x 512119709 
F115 = 5 x 28657 • 1381 x 2441738887963981 
F133 = 13 x 37 x 113 * 3457 x 42293 x 351301301942501 
F135 = 2 x 5 x 17 x 53 x 109 x 61 x 109441 * 1114769954367361 
F141 = 2 x 2971215073 * 108289 x 1435097 x 142017737 
F149 = 110557 x 162709 x 4000949 x 85607646594577 

We also factorized a further 17 numbers F with n even, and because 
of the identity F 0 = F L it will be sufficient to list the prime factors of 

J 2m m m 
the corresponding Lucas numbers L (those factors that are improper fac-
tors of F ? are placed before the asterisk): 
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L61 = 5600748293801 (prime) 

L62 = 3 * 3020733700601 

L68 = 7 * 23230657239121 

L71 = 688846502588399 (prime) 

L73 = 151549 x 11899937029 

L76 = 7 * 1091346396980401 

L77 = 29 x 199 * 229769 x 9321929 

L80 = 2207 * 23725145626561 

L82 = 3 * 163 x 800483 x 350207569 

L85 = 11 x 3571 * 1158551 x 12760031 

L91 = 29 x 521 * 689667151970161 

L92 = 7 * 253367 x 9506372193863 

L93 = 22 x 3010349 * 63799 x 35510749 

L94 = 3 * 563 x 5641 x 4632894751907 

L96 = 2 x 1087 x 4481 * 11862575248703 

L98 = 3 x 281 • 5881 x 61025309469041 

L100 = 7 x 2161 * 9125201 x 5738108801 

In each case the process was taken sufficiently far to ensure that the final 

quotient is a prime, as explained in the previous section. In the case of F115 

this involved testing trial factors N almost up to 5 x 107. 
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