It suffices to show that for any prime p, the highest power of p dividing the numerator is not less than that dividing the denominator. By the first part, this is equivalent to
(*)

$$
\sum_{\mathrm{k}=1}^{\infty}\left[\frac{\mathrm{m}}{\alpha\left(\mathrm{p}^{\mathrm{k}}\right)}\right] \geq \sum_{\mathrm{k}=1}^{\infty}\left[\frac{\mathrm{r}}{\alpha\left(\mathrm{p}^{\mathrm{k}}\right)}\right]+\sum_{\mathrm{k}=1}^{\infty}\left[\frac{\mathrm{m}-\mathrm{r}}{\alpha\left(\mathrm{p}^{\mathrm{k}}\right)}\right]
$$

But the elementary inequality $[x+y] \geq[x]+[y]$ shows that

$$
\left[\frac{\mathrm{m}}{\alpha}\right] \geq\left[\frac{\mathrm{r}}{\alpha}\right]+\left[\frac{\mathrm{m}-\mathrm{r}}{\alpha}\right]
$$

implying (\star) and the result.
Also solved by M. Yoder.
[Continued from page 30.]
6. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1930, fourth ed., 1960.
7. O. Wyler, "On Second--Order Recurrences," Amer. Math. Monthly, 72, pp. 500-506, May, 1965,
8. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67, pp. 525-532 (June 1960).
9. R. P. Backstrom, "On the Determination of the Zeros of the FibonacciSequence," Fibonacci Quarterly, Vol. 5, pp. 313-322, December, 1966.

```
                                    * * * * *
JUST OUT
by Joseph and Frances Gies
```

A new book---Leonardo of Pisa and the new mathematics of the Middle Ages---concerning our Fibonacci. Thomas Y. Crowell Company, New York, 1970, pp, 127 -- $\$ 3.95 \cdot$

