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B-l 78 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

For all positive integers n show that 

F = Y 2
n ~ i F + 2 n 

*2n+2 .A; *2 i - l 
1=1 

and 

1=1 

Generalize. 

B-l 79 Based on Douglas hind's Problem B-l65. 
+ + 

Let Z consist of the positive integers and let the function b from Z 
to Z + be defined by b(l) = b(2) = l f b(2k) = b(k), and b(2k + 1) = b(k + 1) 
+ b(k) f o r k = 1,2,° •• . Show that every positive integer m is a value of 
b(n) and that b(n + 1) <> b(n) for all positive integers n. 

105 
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B-180 Proposed by Reuben C. Drake, North Carolina A T University, Greensboro, 
North Carolina. 

Enumerate the paths in the Cartesian plane from (0,0) to (n,0) that 
consist of directed line segments of the four following types: 

Type 

Initial Point 

T e r m i n a l Point 

1 I 

(k,0) 

(k,D 

n 
(k,0) 

(k + 1,0) 

in 

(k , l ) 

( k + 1 , 1 ) 

IV 

( k , l ) 

(k + 1,0) 

B-181 Proposed by J. B. Roberts, Reed College, Portland, Oregon. 

Let m be afixed integer and let G - = -0, Gc =• 1, G = G ., + G n 
° -1 o ' n n-1 n-2 

for n > 1. Show that GQ, G , G2 f G~ * e " is the sequence of upper left 
principal minors of the infinite matrix 

1 

rm-2 

0 

0 

0 

1 

G m - 2 + G m 

(~Dm 

0 

0 

0 

1 

G m - 2 + G m 

(-Dm 

0 

G 
m-

( 

0 

0 

1 

-2 + G m 

- l ) m 

B-182 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

Show that for any prime p and any integer n, 

F = F F (mod p) and np n p N ^ L = L L = L (mod p) np n p n N ^' 

B-183 Proposed by Gustavus J Simmons, Sandia Corporation, Albuquerque, New 
Mexico. 

A positive integer is a palindrome if its digits read the same forward or 
backward. The least positive integer n such that n2 is a palindrome but n 
is not is 26. Let S be the set of n such that n2 is a palindrome but n is 
not. Is S empty, finite, or infinite? 
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SOLUTIONS 

FIBONACCI PYTHAGOREAN TRIPLES 

B-160 Proposed by Robert H. Anglin, Dan River Mills, Danville, Virginia. 

Show that if x = F n F n + 3 , y = 2 F n + 1 F n + 2 , and z = F ^ , then 

X2 + y2 = z2 . 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

Let' t r = F , 0 and v = F , - . Then n+2 n+1 

u2 - v2 _ (u + v ) (u - v) = F + 3 F = x , 2uv = y, u2 + v2 = z , 

and hence x2 + y2 = z2, 

Also solved by Herta T. Freitag, Bruce W. King, Douglas Lind, John W. Milsom, A. G. 
Shannon (Boroko, T. P. N. GJ, Gregory Wulcyzn, and the Proposer. 

P E L L NUMBER IDENTITIES 

B-161 Proposed by John Ivie, Student, University of California, Berkeley, California. 

Given the Pe l l n u m b e r s defined by ? n + 2 = 2 P n + 1 + V^ P 0 = 0S P t = 19 

show that for k > 0: 

a) p k = 
[<k-l)/2] t-D/2J,/ k \ 

£ Ur + l)2 
r=0 \ / 

W) P2k = i i i ; j 2 r p r •m 
Solution by Douglas Lind, Cambridge University, Cambridge, England. 

Let 

a = 1 + \ / 2 , b = 1 - ViT 
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be the roots of the characteristic polynomial x2 - 2x - 1. It follows from the 
theory of difference equations that there are constants A and B such that 

P n = Aa11 + Bbn . 

Solving the system of simultaneous equations resulting by setting n = 0 , 1 , we 
find 

A = 1/2V§", B = -1/2V? . 

Hence 

P = _L (a
k - bk) = -L= E ("P/2 - <-DJ2j/2l K 2VT 2V5 j=0 V J A -I 

Cioc-i)] [!(k-D] 

Also, since a and b satisfy x2 = 2x + 1, we have 

2 r 

Po,,--= - ^ ( a ^ - b 2 k ) = - ^ ( f e a + l ) k - (2b + l ) b ) ,= -J_ (a
2k 

2 k 2V2 ' 2V2~ 

UH'bf) - a®* r 

4/so so/ve<i fry i/erfa T. Freitag, Bruce W. King, Gregory Wulcyzn, Michael Yoder, 
and the Proposer. 

A REPRESENTATION THEOREM 

B-162 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let r be a fixed positive integer and let the sequence uj, u2,* • * satisfy 
u = u - ,+u 0 + • • • + u for n > r and have initial conditions u. = 2J~ n n-1 n-2 n- r 3 
for j = 1,2,« • • , r . Show that every representation of U as a sum of distinct 
u. must be of the form u itself or contain explicitly the terms u - , u 9 , 1 n n-* x n—& 
u - and some representation of u 
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Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

For r = 1, the theorem is trivial; we therefore assume r ^ 2. Firs t 
we show by induction that 

n 

E u. < u l 0 . l n+2 
i=l 

For n = l , 2 , ' " , r this is obvious; and if 

n 
J2 u. < un + 2* where n < r , 
i=l 

n+1 
S ui < \ + 2 + V l ^ Vf-3' 
1=1 

Now let 

k<n 

c(k) = 0 or 1 for all k9 be a representation of u and assume c(j) = 0 for 
some j with n - r + 1<. j <; n - 1* Then 

n-1 
__ c(k)u^< 

k<n £<n k=l J 

(n - r - 1 n-1 \ 

E \\Z \)-Vr+l k=l k=n-r / 
/ n - r - 1 \ 
1 j ^ . k n-r+11 n n 
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which i s a contradict ion. Thus we mus t have 

u = u - + • • • + u ,- + S , n n - 1 n - r + 1 

where S i s some represen ta t ion of u _ . 

See "General ized Fibonacci Numbers and the Polygonal N u m b e r s , " 

Jou rna l of Recreat ional Ma thema t i c s , July* 1968, pp . 144-150. 

Also solved by the Proposer. 

A VARIANT OF THE EULER-BINET FORMULA 

B-163 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let n be a posi t ive in teger . C lea r ly 

(1 + V 5 ) n = a + b V 5 n n 

with a and b i n t ege r s . Show that 2 i s a d iv i sor of a and of b . 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Le t 

a = (1 + V § ) / 2 and ]8 = (1 - V§) /2 . 

El iminat ion of ^ f rom L = an + fi1 and V 5 F = an - /311 gives 

2c/1 = L + V 5 > . n n 

T h u s , 

(1 + V 5 ) n = 2n~"1L + V5"(2n""1F ) , n n 

where a = 2 n ~ L n and b = 2n"~ F . 

Also solved by Juliette Davenport, Herta T. Freitag, John E. Homer, Jr., John Ivie, 
Bruce W. King, Douglas Lind, Peter A. Lindstrom, A. G. Shannon (Boroko, T. P. N GJ, 
Michael Yoder, and the proposer. 
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A GENERALIZED SEQUENCE WITH CHARACTERISTIC 1 1 , 1 H 

B-164 Proposed by J. A. H. Hunter, Toronto, Canada. 

A F ibonacci - type sequence i s defined by: 

G . 0 = G , - + G , n+2 n+1 n 

with Gi = a and G2 = b . Find the min imum posi t ive values of in tege r s a 

and b , subject to a being odd, to satisfy: 

G , G ^ - G2 = - l l l l l ( - l ) n for n > 1. n - 1 n+1 n 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

If the given equation i s t rue for any one value of n , i t i s t rue for all 

va lues of n; hence taking n = 2, we get 

a (a + b) - b2 = -11111 , 
4a2 + 4ab - 4b2 = -44444, 

(2a + b)2 = 5b2 - 44444 . 

Now 5b2 - 44444 > b2 l eads to b > 105; t ry ing b = 106, 107, • • • in s u c c e s -

s ion, one finds the sm a l l e s t value of b to make 5b2 - 44444 a squa re 

b = 111. However , th i s gives 2a + b = 131, a = 10, and a i s supposed to 

be odd. Continuing with b = 112, 113, • •9 , we find 

1662 = 5(120)2 - 44444 , 

which gives a = 23 , b = 120 as the sma l l e s t solution,, 

Also solved by Christine Anderson, Herta T. Freitag, John E. Homer, Jr., Gregory 
Wulczyn, and the Proposer. 

A MONOTONIC SURJECTION FROM Z + TO z" 

B-165 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 
Define the sequence |b(n)} by b(l) = b(2) = 1, b(2k) = b(k), and 
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b(2k + 1) = b(k + 1) + b(k) for k > 1 . 

For n > 1, show the following: 

(a) b ( [2 n + 1 + (-l)n /3) = F n + 1 . 

(b) bQi-^+i-ifysi = Ln . 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

(a) For n = 0,1 the formula is easily verified. Assume it is true for 
n - 2 and n - 1 with n >, 2; then if n is even, 

b [ (2 n + 1 + l) /3] = b[(2n - l ) /3 + b (2n + 2)/3] 

= F n + b [(2n _ 1 + l ) /3 ] 

= F + F - = F ^ . n n-1 n+1 

Similarly, if n is odd, 

b [ (2 n + 1 - 1/3] = F n+1 ' 

(b) For n = 1,2 the theorem is true; and by exactly the same argument 
as in (a), it follows by induction for all positive integers n. 
Also solved by Herta T. Freitag and the Proposer. 

* • • * * 

(Continued from page 101.) 

SOLUTIONS TO PROBLEMS 

1. . 5n3 - 4n2 + 3n - 8 . 
2. 3n2 - 8n + 4 and the Fibonacci sequence: 1,4,5,9,14,' °  • . 

3. 7n3 + 3n2 - 5n + 2 + 3x2n . 

4. 4n + 3 + 3(-l)n . 

5. 2n3 - 3n2 - n + 5 and the Fibonacci sequence 4L 

• • • • * 


