THE LUCAS-LEHMER TEST FOR MERSENNE NUMBERS

SIDNEY KRAVITZ
Dover, New Jersey

The purpose of this note is to present certain computer calculations relating to the Lucas-Lehmer Test for the primality of Mersenne Numbers.

The Lucas-Lehmer Test states that the Mersenne number $M_{p}=2^{p}-1$ is prime if and only if $\mathrm{S}_{\mathrm{p}-1} \equiv 0 \bmod \mathrm{M}_{\mathrm{p}}$ where

$$
\begin{equation*}
S_{i+1}=S_{i}^{2}-2 \tag{1}
\end{equation*}
$$

and $S_{1}=4$. Lehmer further states ${ }^{\star}$ that this test is valid not only for $S_{1}=4$ but for S_{1} equal to 2^{p-2} different numbers $\bmod M_{p}$. These 2^{p-2} starting values, $S_{1, i}, \quad\left(i=1,2, \cdots, 2^{p-2}\right)$ are determined by

$$
\begin{equation*}
\mathrm{S}_{1, \mathrm{i}+1}=14 \mathrm{~S}_{1, \mathrm{i}}-\mathrm{S}_{1, \mathrm{i}-1} \tag{2}
\end{equation*}
$$

where $S_{1,1}=S_{1}=4$ and $S_{1,2}=52$.
Figure 1 demonstrates the Lucas-Lehmer Test for $M_{7}=2^{7}-1=127$. Each of the $2^{p-2}=32$ starting values, $S_{1, i}$, as determined by Eq. (2) leads to $S_{6}=0 \bmod M_{7}$ following Eq. (1). There are 16 different values of S_{2}, 8 different values of S_{3}, etc. Note that $S_{7}=-2$ and $S_{8}=2 \bmod M_{7}$. The result is that $2^{p-1}+1=65$ different numbers $\bmod M_{p}$ are involved in the Lucas-Lehmer test.

What happens to the other $q^{p-1}-2=62$ numbers $\bmod M_{7}$ when we apply Eq. (1)? This is shown in Fig. 2. We see that successive terms do not lead to a zero term, but instead are repetitive in cycles whose periods are divisors of $(p-1)$. Figure 2 shows four cycles of double sixes and two cycles of double threes.

A computer program was used to determine the structure of the LucasLehmer Test for M_{7}, M_{13} and M_{17} with the following results.
*D. H. Lehmer, "An Extended Theory of Lucas' Functions, "Annals of Math., (2) 31 (1930), pages 419-448.
[Feb.

For $\mathrm{M}_{7}=127$
A Lucas-Lehmer pattern of $2^{\mathrm{p}-1}+1$ terms

making	65 terms
making	48 terms
making	12 terms
making	2 terms
Total 127 terms	

For $M_{13}=8191$
A Lucas-Lehmer pattern of $2^{p-1}+1$ terms 165 cycles of double twelves

9 cycles of double sixes
1 cycle of double fours
2 cycles of double threes
1 cycle of double twos
The two terms ± 1

For $\mathrm{M}_{17}=131,071$
A Lucas-Lehmer pattern of $2^{\mathrm{p}-1}+1$ terms 2032 cycles of double sixteens

30 cycles of double eights
3 cycles of double fours
1 cycle of double twos
The two terms ± 1

For $\mathrm{M}_{19}=524287$
A Lucas-Lehmer pattern of $2^{p-1}+1$ terms
7252 cycles of double eighteens
56 cycles of double nines
4 cycles of double sixes
2 cycles of double threes
The two terms ± 1
making 262145 terms
making 261072 terms
making 1008 terms
making 48 terms
making 12 terms
making 2 terms
Total 524287 terms

