FIBONACCI SEQUENCE MODULO a prime $p \equiv 3(\bmod 4)$
 GOTTFRIED BRUCKNER
 DAW, Institut fur Reine Mathematik, Berlin-Adlershof, Germany

Shah [1] proved: For a prime $q>7$ the Fibonacci sequence might contain a complete residue system $\bmod q$ only if $q \equiv 3$ or $7(\bmod 20)$. Here we show the

Theorem. Let p be a prime, $p>7, p \equiv 3(\bmod 4)$, then in the Fibonacci sequence, a complete residue system mod p doesn't exist.

It follows from this and Shah's result: The only primes for which the Fibonacci sequence possesses a complete residue system are 2, 3, 5, and 7 .

Let p be a prime, $\mathrm{p}>7, \mathrm{p} \equiv 3(\bmod 4)$. In the following all residues and congruences are meant mod p. For the Fibonacci sequences

$$
u_{-1}=0, \quad u_{0}=1, \quad u_{1}=1, \quad u_{2}=2, \cdots
$$

is true:
(1) $u_{n}=u_{a} u_{n-a}+u_{a-1} u_{n-a-1}, \quad a=0, \cdots, n ; n=0,1, \cdots$
(2) $u_{k+b} \equiv \pm u_{k-b}, \quad b=0, \cdots, k$,
where $\mathrm{g}=2 \mathrm{k}+1$ is the minimal index so that $\mathrm{p} \mid \mathrm{u}_{\mathrm{g}}($ for $\mathrm{p} \equiv 3(\bmod 4) \mathrm{g}$ is uneven).
(3) $\mathrm{u}_{\mathrm{x}(\mathrm{g}+1)+\mathrm{y}} \equiv \pm \mathrm{u}_{\mathrm{y}}, \quad \mathrm{y}=0, \cdots, \mathrm{~g} ; \mathrm{x}=0,1,2, \ldots$
(You verify these known facts by easy calculations.)
Lemma. The residues

$$
u_{s} u_{s-1}^{-1}, \quad s=1, \cdots, g
$$

are all different.
Proof. From

$$
u_{a} u_{b-1} \equiv u_{b} u_{a-1}, \quad 1 \leq \mathrm{a} \leq \mathrm{b} \leq \mathrm{g}
$$

we define (putting $u_{a}=u_{a-1}+u_{a-2}$ and $u_{b}=u_{b-1}+u_{b-2}$)

$$
u_{a-1} u_{b-2} \equiv u_{b-1} u_{a-2},
$$

continuing this way, we get

$$
u_{1} u_{b-a} \equiv u_{b-a+1} u_{0}
$$

this means

$$
u_{b-a} \equiv u_{b-a+1}
$$

hence $u_{b-a-1} \equiv 0$, hence $b=a$.
Corollary 1. $\mathrm{g} \leq \mathrm{p}$.
Corollary 2. The residues

$$
u_{s} u_{s-e}^{-1}, \quad s=e, \cdots, g+e-1
$$

are all different, e being a given number $1 \leq \mathrm{e} \leq$ g.
Proof. From

$$
u_{a} u_{b-e} \equiv u_{b} u_{a-e}
$$

we conclude with

$$
u_{a}=u_{e} u_{a-e}+u_{e-1} u_{a-e-1}
$$

and

$$
u_{b}=u_{e} u_{b-e}+u_{b-e-1}
$$

(from (1))

$$
u_{a-e-1} u_{b-e} \equiv u_{b-e-1} u_{a-e}
$$

and by the Lemma, $\mathrm{a}-\mathrm{e}=\mathrm{b}-\mathrm{e}, \mathrm{a}=\mathrm{b}$.
(The Lemma and Corollaries hold, of course, for all primes.)
Proof of the Theorem. From (2) and (3), it is clear that

$$
u_{\mathrm{n}} \equiv 0 \quad \text { or } \pm u_{\mathrm{c}}, \quad 1 \leq \mathrm{c} \leq \mathrm{k}
$$

holds for all n . Therefore the question is whether

$$
\left\{0, \pm u_{c}, 1 \leq \mathrm{c} \leq \mathrm{k}\right\}
$$

forms a complete residue system or not. This might be the case only if k takes its maximum ($p-1$)/2. Hence to prove the Theorem, it suffices to prove: Is $\mathrm{g}=\mathrm{p}$ then there is a congruence

$$
(\star) \mathrm{u}_{\mathrm{a}} \equiv \pm \mathrm{u}_{\mathrm{b}}
$$

for at least one pair (a, b), $1 \leq \mathrm{a}<\mathrm{b} \leq(\mathrm{p}-1) / 2$.
Putting $e=5$, Corollary 2 gives: The p residues

$$
u_{s} u_{s-5}^{-1}, \quad s=5, \cdots, p+4
$$

are all different. Hence there is a $\mathrm{t}, 5 \leq \mathrm{t} \leq \mathrm{p}+4$, satisfying

$$
u_{t} u_{t-5}^{-1} \equiv 1
$$

From this,

$$
u_{t} \equiv u_{t-5} \text { for one } t, \quad 5 \leq t \leq p+4
$$

We differ 4 cases:
a)
$\mathrm{t} \geq \mathrm{p}$,
b)
$\mathrm{p}>\mathrm{t}>\mathrm{t}-5 \geq(\mathrm{p}-1) / 2$,
c)
d)

$$
\begin{gathered}
t>(p-1) / 2>t-5 \\
\quad(p-1) / 2 \geq t
\end{gathered}
$$

Case a) is impossible:

$$
u_{p \pm 4} \equiv \pm u_{3}, \quad u_{p \pm 3} \equiv \pm u_{2}, \quad u_{p \pm 2} \equiv \pm u_{1}, \quad u_{p \pm 1} \equiv \pm u_{0}, \quad u_{p} \equiv 0
$$

(from (2) and (3)). (Check the cases $t=p, \cdots, p+4$ one after the other and take into account $p>5$.) While Case (d) is a congruence (\star) itself, we easily get such a congruence in Case (b) by utilizing (2). In the remaining Case (c), we put

$$
t=(p-1) / 2+r, \quad 1 \leq r \leq 4
$$

We have

$$
u_{(p-1) / 2+r} \equiv u_{(p-1) / 2-(5-r)}
$$

From (2), we conclude

$$
u_{(p-1) / 2+r} \equiv \pm u_{(p-1) / 2-r}
$$

hence

$$
\left(*^{*}\right) u_{(p-1) / 2-(5-r)} \equiv \pm u_{(p-1) / 2-r} .
$$

$\mathrm{p}>7$ implies $(\mathrm{p}-1) / 2>4$, therefore in $(* *)$, both indices are $\geq 1, r$ and $5-\mathrm{r}$ always being different $\left(^{(* *)}\right.$ is a congruence $\left(^{*}\right)$. This finishes the proof of the Theorem.

REFERENCE

-1. A. P. Shah, "Fibonacci Sequence Modulo m," Fibonacci Quarterly, Vol. 6 (1968), pp. 139-141.

