FIBONACCI REPRESENTATIONS II

L. CARLITZ*

Duke University, Durham, North Carolina

1. Let $R(N)$ denote the number of representations of

$$
\begin{equation*}
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\mathrm{F}_{\mathrm{k}_{2}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{t}}} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{1}>\mathrm{k}_{2}>\cdots>\mathrm{k}_{\mathrm{t}} \geq 2 \tag{1.2}
\end{equation*}
$$

The integer t is allowed to vary. We call (1.1) a Fibonacci representation of N provided (1.2) is satisfied. If in (1.1), we have

$$
\begin{equation*}
k_{j}-k_{j+1} \geq 2 \quad(j=1, \cdots, t-1) ; \quad k_{t} \geq 2 \tag{1.3}
\end{equation*}
$$

then the representation (1.1) is unique and is called the canonical representation of N .

In a previous paper [1], the writer discussed the function $R(N)$. The paper makes considerable use of the canonical representation and a function $e(N)$ defined by

$$
\begin{equation*}
\mathrm{e}(\mathrm{~N})=\mathrm{F}_{\mathrm{k}_{1}-1}+\mathrm{F}_{\mathrm{k}_{2}-1}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{t}}-1} \tag{1.4}
\end{equation*}
$$

It is shown that $e(N)$ is independent of the particular representation. The first main result of [1] is a reduction formula which theoretically enables one to evaluate $R(N)$ for arbitrary N. Unfortunately, the general case is very complicated. However, if all the k_{1} in the canonical representation have the same parity, the situation is much more favorable and much simpler results are obtained.

* Supported in part by NSF grant GP-7855.

In the present paper, we consider the function $R(t, N)$ which is defined as the number of representations (1.1) subject to (1.2) where now t is fixed. Again we find a reduction formula which theoretically enables one to evaluate $R(t, N)$ but again leads to very complicated results. However, if all the k_{1} in the canonical representation have the same parity, the results simplify considerably. In particular, if

$$
\begin{gathered}
N=F_{2 k_{1}}+\cdots+F_{2 k_{r}} \quad\left(k_{1}>k_{2}>\cdots>k_{r} \geq 1\right), \\
j_{S}=k_{s}-k_{s+1} \quad(1 \leq s<r) ; \quad j_{r}=k_{r}, \\
f_{r}(t)=f\left(t ; j_{1}, \cdots, j_{r}\right)=R(t, N), \\
F_{r}(x)=F\left(x ; j_{1}, \cdots, j_{r}\right)=\sum_{t=1}^{\infty} f\left(t ; j_{1}, \cdots, j_{r}\right) x^{t}, \\
G_{r}(x)=F\left(x ; j_{1}, \cdots, j_{r-1}, j_{r}+1\right),
\end{gathered}
$$

then we have
(1.5) $\quad G_{r}(x)-\frac{x\left(1-x^{j_{r}^{+1}}\right)}{1-x} G_{r+1}(x)-x^{j_{r-1}+2} G_{r-2}(x)=0 \quad(r \geq 2)$,
where

$$
G_{0}(x)=1, \quad G_{1}(x)=\frac{x\left(1-x^{j_{1}+1}\right)}{1-x}
$$

In particular, if $j_{1}=\cdots=j_{r}$, then

$$
\sum_{r=0}^{\infty}{ }^{\infty} G_{r}(x) z^{r}=\left\{1-[j+1] x z+x^{j+2} z^{2}\right\}^{-1}
$$

from which an explicit formula for $G_{r}(x)$ is easily obtained. Also the case

$$
\mathrm{j}_{1}=\cdots=\mathrm{j}_{\mathrm{r}-1}=\mathrm{j}, \quad \mathrm{j}_{\mathrm{r}}=\mathrm{k}
$$

leads to simple results.
In the final section of the paper some further problems are stated.
2. Put
(2.1)

$$
\Phi(a, x, y)=\prod_{n=1}^{\infty}\left(1+a_{n}^{F_{n}}{ }_{y}^{F_{n+1}}\right)
$$

Then

$$
\Phi(a, x, x y)=\prod_{n=1}^{\infty}\left(1+a^{F}{ }_{n+1}{ }_{x}^{F}{ }_{n+2}\right)=\prod_{n=2}^{\infty}\left(1+a^{F_{n}}{ }_{x}{ }^{F_{n+1}}\right)
$$

so that

$$
(1+\operatorname{axy}) \Phi(\mathrm{a}, \mathrm{x}, \mathrm{xy})=\Phi(\mathrm{a}, \mathrm{y}, \mathrm{x})
$$

Now put

$$
\begin{equation*}
\Phi(a, x, y)=\sum_{k, m n=0}^{\infty} A(k, m, n) a^{k} x^{m} y^{n} \tag{2.2}
\end{equation*}
$$

Comparison of coefficients gives
(2.3) $A(k, m, n)=A(k, n-m, m)+A(k-1, n-m, m-1)$,
where it is understood that $A(k, m, n)=0$ when any of the arguments is negative.

In the next place, it is evident from the definition of $e(N)$ and $R(k, N)$ that

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+a^{F_{n}}{ }_{y}^{F_{n+1}}\right)=\sum_{N=0}^{\infty} R(k, N) a^{k} x^{e(N)} y^{N} . \tag{2.4}
\end{equation*}
$$

Comparing (2.4) with (2.1) and (2.2), we get

$$
\begin{equation*}
R(k, N)=A(k, e(N), N) \tag{2.5}
\end{equation*}
$$

In particular, for fixed k, n,

$$
\begin{equation*}
A(k, m, n)=0 \quad(m \neq e(n)) \tag{2.6}
\end{equation*}
$$

It should be observed that $A(k, e(n), n)$ may vanish for certain values of k and n. However, since

$$
R(n)=\sum_{k=0}^{\infty} R(k, n)=\sum_{k=0}^{\infty} A(k, e(n), n)
$$

it follows that, for fixed n, there is at least one value of k such that

$$
\mathrm{A}(\mathrm{k}, \mathrm{e}(\mathrm{n}), \mathrm{n}) \neq 0
$$

If we take $m=e(n)$ in (2.3), we get
(2.7) $R(t, N)=A(t, N-e(N), e(N))+A(t-1, N-e(N), e(N)-1)$.

Now let N have the canonical representation

$$
\begin{equation*}
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}} \tag{2.8}
\end{equation*}
$$

with k_{r} odd. Then

$$
\begin{gathered}
e(N)=F_{k_{1}-1}+\cdots+F_{k_{r^{\prime}}-1} \\
\mathrm{~N}-\mathrm{e}(\mathrm{~N})=\mathrm{F}_{\mathrm{k}_{1}-2}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}-2}
\end{gathered}
$$

Since $\mathrm{k}_{\mathrm{r}} \geq 3$, it follows that

$$
\begin{equation*}
N-e(N)=e(e(N)) \tag{2.9}
\end{equation*}
$$

On the other hand, exactly as in [1], we find that

$$
e(e(N)-1)=N-e(N)-1
$$

It follows that

$$
\mathrm{A}(\mathrm{t}, \mathrm{~N}-\mathrm{e}(\mathrm{~N}), \mathrm{e}(\mathrm{~N})-1)=0
$$

and (2.7) reduces to

$$
R(t, N)=A(t, e(e(N))
$$

We have, therefore,

$$
\begin{equation*}
R(t, N)=R(t, e(N)) \quad\left(k_{r} \text { odd }\right) \tag{2.10}
\end{equation*}
$$

Now let k_{r} in the canonical representation of N be even. We shall show that
(2.11) $R(t, N)=R\left(t-1, e^{k_{r}-1}\left(N_{1}\right)\right)+\sum_{j=2}^{S} R\left(t-j, e^{k_{r}-2}\left(N_{1}\right)\right)$,
where $\mathrm{k}_{\mathrm{r}}=2 \mathrm{~s}$,

$$
\begin{equation*}
\mathrm{N}_{1}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}-1}} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{k}(N)=e\left(e^{k-1}(N)\right), \quad e^{0}(N)=N \tag{2.13}
\end{equation*}
$$

Assume first that $s>1$. Then as above

$$
\begin{equation*}
N-e(N)=e(e(N)) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
e(e(N)-1)=e(e(N)) \tag{2.15}
\end{equation*}
$$

Thus (2.7) becomes
(2.16) $\quad R(t, N)=R(t, e(N))+R(t-1, e(N)-1) \quad\left(k_{r}>2\right)$.

When $\mathrm{k}_{\mathrm{r}}=2$, we have, as in [1],

$$
\begin{aligned}
N-e(N)= & F_{k_{1}-2}+\cdots+F_{k_{r-1}-2}=e\left(e\left(N_{1}\right)\right) \\
e(N)-1= & F_{k_{1}-1}+\cdots+F_{k_{r-1}-1}=e\left(N_{1}\right) \\
& e(e(N))=N-e(N)-1
\end{aligned}
$$

It follows that

$$
\begin{equation*}
R(t, N)=R\left(t-1, e\left(N_{1}\right)\right) \quad\left(k_{r}=2\right) \tag{2.17}
\end{equation*}
$$

Returning to (2.16), since

$$
\begin{aligned}
\mathrm{e}(\mathrm{~N})-1 & =\mathrm{F}_{\mathrm{k}_{1}-1}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{k}-1}-1}+\left(\mathrm{F}_{2}+\mathrm{F}_{4}+\cdots+\mathrm{F}_{2 \mathrm{t}-2}\right) \\
& =\mathrm{e}\left(\mathrm{~N}_{1}\right)+\left(\mathrm{F}_{2}+\mathrm{F}_{4}+\cdots+\mathrm{F}_{2 \mathrm{t}-2}\right)
\end{aligned}
$$

it follows from (2.17) and (2.10) that

$$
\begin{aligned}
R(t, e(N)-1) & =R\left(t-1, e^{2}\left(N_{1}\right)+F_{3}+\cdots+F_{2 t-3}\right) \\
& =R\left(t-1, e^{3}\left(N_{1}\right)+F_{2}+\cdots+F_{2 t-4}\right)
\end{aligned}
$$

Repeating this process, we get

$$
R(t, e(N)-1)=R\left(t-s, e^{2 s-2}\left(N_{1}\right)\right)
$$

so that (2.16) becomes
(2.18) $R(t, N)=R\left(t, e^{2}(N)\right)+R\left(t-s, e^{2 s-2}\left(N_{1}\right)\right) \quad\left(k_{r}=2 s>2\right)$.

If $\mathrm{k}_{\mathrm{r}}=4$, Eq. (2.18) reduces, by (2.17) and (2.10), to

$$
R(t, N)=R\left(t-1, e^{4}\left(N_{1}\right)\right)+R\left(t-2, e^{2}\left(N_{1}\right)\right)
$$

since

$$
\begin{equation*}
R(t, N)=R\left(t, e\left(N_{1}\right)\right) \quad\left(k_{r}=2\right) \tag{2.19}
\end{equation*}
$$

For $\mathrm{k}_{4}=2 \mathrm{~s}>4$, Eq. $(2,18)$ gives

$$
\left.\begin{array}{rl}
R(t, N)= & R\left(t, e^{4}(N)+R\left(t-s+1, e^{2 s-2}\left(N_{1}\right)\right)+R\left(t-s, e^{2 s-2}\left(N_{1}\right)\right)\right. \\
= & R\left(t, e^{6}(N)\right)+R\left(t-s+2, e^{2 s-2}\left(N_{1}\right)\right)
\end{array}\right) R\left(t-s+1, e^{2 s-2}\left(N_{1}\right)\right) .
$$

Continuing in this way, we ultimately get

$$
\begin{equation*}
R(t, N)=R\left(t, e^{2 s-2}(N)\right)+\sum_{j=2}^{s} R\left(t-j, e^{2 s-2}\left(N_{1}\right)\right) \tag{2.20}
\end{equation*}
$$

By (2.17),

$$
R\left(t, e^{2 s-2}(N)\right)=R\left(t-1, e^{2 s-1}\left(N_{1}\right)\right)
$$

so that (2.20) reduces to (2.11).
This proves (2.11) when $\mathrm{k}_{\mathrm{r}}>2$; for $\mathrm{k}_{\mathrm{r}}=2$, it is evident that (2.11) is identical with (2.17).

We may now state

Theorem 1. Let N have the canonical representation

$$
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}}
$$

where

$$
k_{j}-k_{j+1} \geq 2 \quad(j=1, \cdots, r-1) ; k_{r} \geq 2
$$

Then, for $r>1, t>1$,
(2.21) $\quad R(t, N)=R\left(t-1, e^{k_{r}-1}\left(N_{1}\right)\right)+\sum_{j=2}^{s} R\left(t-j, e^{k_{r}-2}\left(N_{1}\right)\right)$,
where $s=\left[k_{r} / 2\right], \quad N_{1}=F_{k_{1}}+\cdots+F_{k_{r-1}}$.
3. For $N=F_{r}, r \geq 2$, Eq. (2.7) reduces to
(3.1) $\quad R\left(t, F_{r}\right)=A\left(t, F_{r-2}, F_{r-1}\right)+A\left(t-1, F_{r-2}, F_{r-1}-1\right)$

$$
=R\left(t, F_{r-1}\right)+A\left(t-1, F_{r-2}, F_{r-1}-1\right)
$$

Also,
(3.2) $\quad R\left(t, F_{r}-1\right)=A\left(t, F_{r}-1-e\left(F_{r}-1\right), e\left(F_{r}-1\right)\right)$ $\left.+A(t-1), F_{r}-1-e\left(F_{r}-1\right), e\left(F_{r}-1\right)-1\right)$.

Since

$$
e\left(F_{2 s+1}-1\right)=F_{2 s}, e\left(F_{2 s}-1\right)=F_{2 s-1}-1
$$

we have

$$
\begin{gathered}
A\left(t-1, F_{2 s-2}, F_{2 s-1}-1\right)=R\left(t-1, F_{2 s-1}-1\right) \\
A\left(t-1, F_{2 s}-1\right)=0
\end{gathered}
$$

Thus (3.1) becomes

$$
\left\{\begin{array}{l}
R\left(t, F_{2 s}\right)=R\left(t, F_{2 s-1}\right)+R\left(t-1, F_{2 s-1}-1\right) \tag{3.2}\\
R\left(t, F_{2 s-1}\right)=R\left(t, F_{2 s}\right)
\end{array}\right.
$$

In the next place, Eq. (3.2) gives

$$
\begin{aligned}
R\left(t, F_{2 s}-1\right) & =A\left(t, F_{2 s-2}, F_{2 s-1}-1\right)+A\left(t-1, F_{2 s-2}, F_{2 s-1}-2\right) \\
= & R\left(t, F_{2 s-1}-1\right), \\
R\left(t, F_{2 s+1}-1\right) & =A\left(t, F_{2 s-1}-1, F_{2 s}\right)+A\left(t-1, F_{2 s-1}-1, F_{2 s}-1\right) \\
& =R\left(t-1, F_{2 s}-1\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
R\left(t, F_{r}-1\right)=R\left(t-\lambda, F_{r-1}-1\right) \quad(r \geq 2) \tag{3.3}
\end{equation*}
$$

where

$$
\lambda=\left\{\begin{array}{lll}
0 & (r & \text { even }) \\
1 & (r & \text { odd })
\end{array}\right.
$$

It follows from (3.3) that

$$
R\left(t, F_{2 s}-1\right)=R(t-s+1,0), \quad R\left(t, F_{2 s+1}-1\right)=R(t-s+1,1)
$$

which gives
(3.4)

$$
\left\{\begin{array}{l}
R\left(t, F_{2 s}-1\right)=\delta_{t, s-1} \\
R\left(t, F_{2 s+1}-1\right)=\delta_{t, s}
\end{array}\right.
$$

Combining (3.2) with (3.4), we get

$$
R\left(t, F_{2 s}\right)=R\left(t, F_{2 s+1}\right)=R\left(t, F_{2 s-1}\right)+\delta_{t, s}
$$

so that

$$
R\left(t, F_{2 s}\right)=R\left(t, F_{2 s-2}\right)+\delta_{t, s}
$$

It follows that

$$
R\left(t, \mathrm{~F}_{2 \mathrm{~s}}\right)= \begin{cases}1 & (1 \leq \mathrm{t} \leq \mathrm{s}) \\ 0 & (\mathrm{t}>\mathrm{s})\end{cases}
$$

We may now state
Theorem 2. We have, for $s \geq 1$, $t \geq 1$,

$$
\begin{align*}
& R\left(t, F_{2 s+1}-1\right)=R\left(t, F_{2 s+2}-1\right)=\delta_{t, s}, \\
& R\left(t, F_{2 s}\right)=R\left(t, F_{2 s+1}\right)=\left\{\begin{array}{ll}
1 & (1 \leq t \leq s) \\
0 & (t>s)
\end{array} .\right. \tag{3.5}
\end{align*}
$$

Let $m(N)$ denote the minimum number of summands in a Fibonacci representation of N and let $M(N)$ denote the maximum number of summands. It follows at once from (2.21) that

$$
\begin{equation*}
\mathrm{m}(\mathrm{~N})=\mathrm{r}, \tag{3.6}
\end{equation*}
$$

where r is the number of summands in the canonical representation of N. Moreover, it is easily proved by induction that

$$
\begin{equation*}
R(r, N)=1 \tag{3.7}
\end{equation*}
$$

As for $M(N)$, it follows from (2.21) that
(3.8)

$$
\mathrm{M}(\mathrm{~N}) \leq M\left(\mathrm{~F}_{\mathrm{k}_{1}-\mathrm{k}_{2}+2}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}-1}-\mathrm{k}_{\mathrm{r}}+2}\right)+\left[\frac{1}{2} \mathrm{k}_{\mathrm{r}}\right]
$$

where

$$
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}}
$$

is the canonical representation. Now, by Theorem 2,

$$
\mathrm{M}\left(\mathrm{~F}_{\mathrm{k}}\right)=\left[{ }_{2}^{1} \mathrm{k}\right]
$$

Hence by (3.8),

$$
\mathrm{M}\left(\mathrm{~F}_{\mathrm{k}_{1}}+\mathrm{F}_{\mathrm{k}_{2}}\right) \leq\left[\frac{1}{2}\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)\right]+\left[\frac{1}{2} \mathrm{k}_{2}\right]+1
$$

Again, applying (3.8), we get
$\mathrm{M}\left(\mathrm{F}_{\mathrm{k}_{1}}+\mathrm{F}_{\mathrm{k}_{2}}+\mathrm{F}_{\mathrm{k}_{3}}\right) \leq\left[\frac{1}{2}\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)\right]+\left[\frac{1}{2}\left(\mathrm{k}_{2}-\mathrm{k}_{3}\right)\right]+\left[\frac{1}{2} \mathrm{k}_{2}\right]+2$.
It is clear that in general we have
(3.9) $M(N) \leq\left[\frac{1}{2}\left(k_{1}-k_{2}\right)\right]+\cdots+\left[\frac{1}{2}\left(k_{r-1}-k_{r}\right)\right]+\left[\frac{1}{2} k_{r}\right]+r-1$,
so that

$$
\begin{equation*}
\mathrm{M}(\mathrm{~N}) \leq\left[\frac{1}{2} \mathrm{k}_{1}\right]+\mathrm{r}-1 \tag{3.10}
\end{equation*}
$$

We note also that (2.21) implies

$$
\begin{equation*}
R(\mathbb{M}(N), N)=1 \tag{3.11}
\end{equation*}
$$

We may state
Theorem 3. Let

$$
\begin{equation*}
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}} \tag{3.12}
\end{equation*}
$$

be the canonical representation of N. Let $m(N)$ denote the minimum number of summands in any Fibonacci representation of N and let $M(N)$ denote the maximum number of summands. Then $m(N)=r$ and $M(N)$ satisfies (3.9). Moreover,

$$
\begin{equation*}
R(\mathrm{~m}(\mathrm{~N}), \mathrm{N})=R(\mathrm{M}(\mathrm{~N}), \mathrm{N})=1 \tag{3.13}
\end{equation*}
$$

It can be shown by examples that (3.9) need not be an equality when $r>1$.
4. While Theorem 1 theoretically enables one to compute $R(t, N)$ for arbitrary t, N, the results are usually very complicated. Simpler results can be obtained when the k_{j} in the canonical representation

$$
\begin{equation*}
\mathrm{N}=\mathrm{F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}} \tag{4.1}
\end{equation*}
$$

have the same parity. In the first place, if all the k_{j} are odd, then, by (2.10),

$$
\mathrm{R}\left(\mathrm{t}, \mathrm{~F}_{\mathrm{k}_{1}}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}}\right)=\mathrm{R}\left(\mathrm{t}, \mathrm{~F}_{\mathrm{k}_{1}-1}+\cdots+\mathrm{F}_{\mathrm{k}_{\mathrm{r}}-1}\right)
$$

There is therefore no loss in generality in assuming that all the k_{j} are even
It will be convenient to use the following notation. Let N have the canonical representation

$$
\begin{equation*}
\mathrm{N}=\mathrm{F}_{2 \mathrm{k}_{1}}+\cdots+\mathrm{F}_{2 \mathrm{k}_{\mathrm{r}}} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{1}>\mathrm{k}_{2}>\cdots>\mathrm{k}_{\mathrm{r}} \geq 1 \tag{4.3}
\end{equation*}
$$

Then, by (2.21) and (2.10),
(4.4)

$$
\begin{aligned}
R(t, N)= & R\left(t-1, F_{2 k_{1}-2 k_{r}}+\cdots+F_{2 k_{r-1}-2 k_{r}}\right) \\
& k_{r} \\
& +\sum_{j=2} R\left(t-j, F_{2 k_{1}-2 k_{r}+2}+\cdots+F_{2 k_{r-1}-2 k_{r}+2}\right)
\end{aligned}
$$

Put

$$
\begin{equation*}
\mathrm{j}_{\mathrm{S}}=\mathrm{k}_{\mathrm{S}}-\mathrm{k}_{\mathrm{S}-1} \quad(\mathrm{~s}=1, \cdots, \mathrm{r}-1) ; \quad \mathrm{j}_{\mathrm{r}}=\mathrm{k}_{\mathrm{r}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{f}_{\mathbf{r}}(\mathrm{t})=\mathrm{f}\left(\mathrm{t} ; \mathrm{j}_{1}, \cdots, \mathrm{j}_{\mathbf{r}}\right)=R(\mathrm{t}, \mathrm{~N}) \tag{4.6}
\end{equation*}
$$

Then (4.4) becomes
(4.7) $f\left(t ; j_{1}, \cdots, j_{r}\right)=f\left(t-1 ; j_{1}, \ldots, j_{r-1}\right)$

$$
+\sum_{u=2}^{j_{r}} f\left(t-u ; j_{1}, \cdots, j_{r-2}, j_{r-1}+1\right) .
$$

By (2.18), we have

$$
\begin{aligned}
R\left(t, F_{2 k_{1}-2 k_{r}+2}+\right. & \left.\cdots+F_{2 k_{r-1}-2 k_{r}+2}\right) \\
= & R\left(t, F_{2 k_{1}-2 k_{r}}+\cdots+F_{2 k_{r-1}-2 k_{r}}\right) \\
& +R\left(t-k_{r-1}+k_{r}-1 ; F_{2 k_{1}-2 k_{r-1}+2}+\cdots\right. \\
& \left.+F_{2 k_{r-2}-2 k_{r-1}+2}\right)
\end{aligned}
$$

so that
(4.8) $f\left(t ; j_{1}, \cdots, j_{r-2}, j_{r-1}+1\right)$

$$
=f\left(t ; j_{1}, \cdots, j_{r-2}, j_{r-1}\right)+f\left(t-j_{r-1}-1 ; j_{1}, \cdots, j_{r-3}, j_{r-2}+1\right)
$$

If we put

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}(\mathrm{x})=\mathrm{F}\left(\mathrm{x} ; \mathrm{j}_{1}, \cdots, \mathrm{j}_{\mathrm{r}}\right)=\sum_{\mathrm{t}=1}^{\infty} \mathrm{f}\left(\mathrm{t} ; \mathrm{j}_{1}, \cdots, \mathrm{j}_{\mathrm{r}}\right) \mathrm{x}^{\mathrm{t}} \tag{4,9}
\end{equation*}
$$

it follows from (4.7) that (for $r>1$),
(4.10) $\quad F\left(x ; j_{1}, \cdots, j_{r}\right)=x F\left(x ; j_{1}, \cdots, j_{r-1}\right)$

$$
+\frac{x\left(x-x^{j_{r}}\right)}{1-x} F\left(x ; j_{1}, \cdots, j_{r-2}, j_{r-1}+1\right)
$$

Similarly, by (4.8),
(4.11) $\quad F\left(x ; j_{1}, \cdots, j_{r-2}, j_{r-1}+1\right)$

$$
\left.=F\left(x ; j_{1}, \cdots, j_{r-2}, j_{r-1}\right)+x^{j_{r-1}}{ }_{F\left(x ; j_{1}\right.}^{+1} \cdots, j_{r-3}, j_{r-2}+1\right),
$$

which yields
(4.12) $\quad F\left(x ; j_{1}, \cdots, j_{r-2}, j_{r-1}+1\right)$

$$
\begin{aligned}
= & F\left(x ; j_{1}, \cdots, j_{r-2}, j_{r-1}\right)+x^{j_{r-1}}{ }^{+1} F\left(x ; j_{1}, \cdots, j_{r-3}, j_{r-2}\right) \\
& +\mathrm{j}_{\mathrm{r}-1}{ }^{+j_{r-2}}{ }^{+2} \underset{r}{ }\left(x ; j_{1}, \cdots, j_{r-3}\right)+\ldots+x^{j_{r-1}}+\ldots+j_{2}+r-1 \\
& F\left(x ; j_{1}\right) .
\end{aligned}
$$

For brevity, put

$$
\begin{equation*}
G_{r}(x)=F\left(x ; j_{1}, \cdots, j_{r-1}, j_{r}+1\right) \tag{4.13}
\end{equation*}
$$

so that (4.10) becomes

$$
\begin{equation*}
F_{r}(x)-x F_{r-1}(x)=\frac{x\left(x-x^{j} r\right.}{1-x} G_{r-1}(x) \tag{4.14}
\end{equation*}
$$

while (4.11) becomes

$$
\begin{equation*}
\mathrm{G}_{\mathrm{r}-1}(\mathrm{x})=\mathrm{F}_{\mathrm{r}-1}(\mathrm{x})+\mathrm{x}^{\mathrm{j}_{\mathrm{r}-1}+1} \mathrm{G}_{\mathrm{r}-2}(\mathrm{x}) \tag{4.15}
\end{equation*}
$$

Combining (4.14) with (4.15), we get

$$
\begin{equation*}
G_{r}(x)-\frac{x\left(1-x^{j_{r+1}}\right)}{1-x} G_{r-1}(x)+x^{j_{r-1}^{+2}} G_{r-2}(x)=0 . \tag{4.16}
\end{equation*}
$$

Thus $\mathrm{G}_{\mathrm{r}}(\mathrm{x})$ satisfies a recurrence of the second order. Note that

$$
\begin{aligned}
G_{1}(x)=F\left(x ; j_{1}+1\right)= & \sum_{t=1}^{\infty} R\left(t, F_{2 j_{1}+2}\right) x^{t} \\
= & \sum_{t=1}^{j_{1}+1} x^{t}=\frac{x\left(1-x^{j_{1}+1}\right)}{1-x},
\end{aligned}
$$

$$
\mathrm{G}_{2}(\mathrm{x})=\mathrm{F}\left(\mathrm{x} ; \mathrm{j}_{1}, \mathrm{j}_{2}+1\right)=\sum_{\mathrm{t}=2}^{\infty} \mathrm{R}\left(\mathrm{t}, \mathrm{~F}_{2 \mathrm{j}_{1}+2 \mathrm{j}_{2}+2}+\mathrm{F}_{2 \mathrm{j}_{2}+2}\right)
$$

Now, by (2.21),

$$
R\left(t, F_{2 j_{1}+2 j_{2}+2}+F_{2 j_{2}+2}\right)=R\left(t-1, F_{2 j_{1}+1}\right)+\sum_{u=2}^{j_{2}+1} R\left(t-u, F_{2 j_{1}+2}\right),
$$

so that

$$
\begin{aligned}
G_{2}(x) & =x \sum_{t=1}^{j_{1}} x^{t}+\sum_{u=2}^{j_{2}+1} x^{u} \sum_{t=1}^{j_{1}+1} x^{t} \\
& =\frac{x^{2}\left(1-x^{j_{1}}\right)}{1-x}+\frac{x^{2}\left(1-x^{j_{2}}\right)}{1-x} \frac{x\left(1-x^{j_{1}+1}\right)}{1-x}
\end{aligned}
$$

Hence, if we take $G_{0}(x)=1$, Eq. (4.16) holds for all $r \geq 2$.
We may state
Theorem 5. With the notation (4.2), (4.6), (4.9), (4.12), $\mathrm{f}_{\mathrm{r}}(\mathrm{t})=\mathrm{R}(\mathrm{t}, \mathrm{N})$ is determined by means of the recurrence (4.16) with

$$
\mathrm{G}_{0}(\mathrm{x})=1, \quad \mathrm{G}_{1}(\mathrm{x})=\frac{\mathrm{x}\left(1-\mathrm{x}^{\mathrm{j}_{1}+1}\right)}{1-\mathrm{x}}
$$

and

$$
F_{r}(x)=G_{r}(x)-x^{j_{r}+1} G_{r-1}(x) .
$$

It is easy to show that $G_{r}(x)$ is equal to the determinant

where

$$
\begin{equation*}
[\mathrm{j}]=\left(1-\mathrm{x}^{\mathrm{j}}\right) /(1-\mathrm{x}) \tag{4.18}
\end{equation*}
$$

Indeed,

$$
\begin{gathered}
D_{1}(x)=x\left[j_{1}+1\right]=G_{1}(x), \\
D_{2}(x)=x^{2}\left[j_{1}+1\right]\left[j_{2}+1\right]-x^{j_{1}+2}=x^{3}\left[j_{1}+1\right]\left[j_{2}\right]+x^{2}\left[j_{1}\right]=G_{2}(x),
\end{gathered}
$$

and

$$
\begin{equation*}
D_{r}(x)=x\left[j_{r}+1\right] D_{r-1}(x)-x^{j_{r-1}+2} D_{r-2}(x) \tag{4.19}
\end{equation*}
$$

Since the recurrence (4.16) and (4.19) are the same, it follows that $G_{r}(\mathrm{x})=\mathrm{D}_{\mathbf{r}}(\mathrm{x})$.
5. When

$$
\begin{equation*}
\mathrm{j}_{1}=\mathrm{j}_{2}=\cdots=\mathrm{j}_{\mathrm{r}}=\mathrm{j} \tag{5.1}
\end{equation*}
$$

we can obtain an explicit formula for $G_{r}(x)$. The recurrence (4.16) reduces to

$$
\begin{equation*}
G_{r}(x)-x[j-1] G_{r-1}(x)+x^{j+2} G_{r-2}(x)=0 \quad(r \geq 2) \tag{5.2}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{r=0}^{\infty} G_{r}(x) z^{r} & =1+[j+1] x z+\sum_{r=2}^{\infty} G_{r}(x) z^{r} \\
& =1+[j+1] x z+\sum_{r=2}^{\infty}\left\{x[j+1] G_{r-1}(x)-x^{j+2} G_{r-2}(x)\right\} z^{r} \\
& =1+\left([j+1] x z+x^{j+2} z^{2}\right) \sum_{r=0}^{\infty} G_{r}(x) z^{r}
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{r=0}^{\infty} G_{r}(x) z^{r} & =\left(1-[j+1] x z+x^{j+2} z^{2}\right)^{-1} \\
& =\sum_{s=0}^{\infty} x^{s} z^{s}\left([j+1]-x^{j+1} z\right)^{s} \\
& =\sum_{s=0}^{\infty} x^{s} z^{s} \sum_{t=0}^{s}(-1)^{t}\binom{s}{t}[j+1]^{s-t_{x}(j+1) t} z^{t}
\end{aligned}
$$

Hence

$$
\begin{equation*}
G_{r}(x)=\sum_{2 t \leq r}^{\infty}(-1)^{t}(r-t)[j+1]^{r-2 t} x^{r+j t} \tag{5.3}
\end{equation*}
$$

Finally, we compute $\mathrm{F}_{\mathrm{r}}(\mathrm{x})$ by using

$$
\begin{equation*}
F_{r}(x)=G_{r}(x)-x^{j+1} G_{r-1}(x) \tag{5.4}
\end{equation*}
$$

When $\mathrm{j}=1$, we have

$$
\sum_{r=0}^{\infty} G_{r}(x)^{r}=\frac{1}{(1-x z)\left(1-x^{2} z\right)}=\frac{1}{1-x}\left(\frac{1}{1-x z}-\frac{1}{1-x^{2} z}\right)
$$

which gives

$$
\begin{equation*}
G_{r}(x)=x^{2}[r]=\frac{x^{r}\left(1-x^{r}\right)}{1-x} \quad(j=1 ; r \geq 1) \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}(\mathrm{x})=\mathrm{x}^{\mathrm{r}} \quad(\mathrm{j}=1) \tag{5.6}
\end{equation*}
$$

In this case, we evidently have

$$
N=F_{2 r}+F_{2 r-2}+\cdots+F_{2}=F_{2 r+1}-1
$$

so that (5.6) is in agreement with (3.4).
For certain applications, it is of interest to take

$$
\begin{equation*}
\mathrm{j}_{1}=\cdots=\mathrm{j}_{\mathrm{r}-1}=\mathrm{j} ; \quad \mathrm{j}_{\mathrm{r}}=\mathrm{k} \tag{5.7}
\end{equation*}
$$

Then $G_{1}(x), G_{2}(x), \cdots, G_{r-1}(x)$ are determined by

$$
\begin{equation*}
G_{s}(x)=\sum_{2 t \leq s}(-1)^{t}\binom{s-t}{t}[j-1]^{s-2 t} x^{s+j t} \quad(1 \leq s<r) \tag{5.8}
\end{equation*}
$$

while

$$
\begin{equation*}
G_{r}^{\prime}(x)=x[k-1] G_{r-1}(x)-x^{j+2} G_{r-2}(x) \tag{5.9}
\end{equation*}
$$

where

$$
G_{r}^{\prime}(x)=G_{r}(x ; j, \cdots, j, k)
$$

Also,

$$
\begin{equation*}
F_{r}^{\prime}(x)=F_{r}(x ; j, \cdots, j, k)=x[k] G_{r-1}(x)-x^{j+2} G_{r-2}(x) \tag{5.10}
\end{equation*}
$$

We shall now make some applications of these results. Since

$$
L_{2 j+1} F_{2 k}=F_{2 k+2 j}+F_{2 k+2 j-2}+\cdots+F_{2 k-2 j}
$$

it follows from (5.10) that
(5.11) $\quad \sum_{t} R\left(t, L_{2 j+1} F_{2 k}\right) x^{t}=x^{2 j+1}[2 j][k-j]-x^{2 j+2}[2 j-1] \quad(j<k)$.
(Note that formula (6.17) of [1] should read

$$
R\left(L_{2 j+1} F_{2 k}\right)=2 j(k-j)-(2 j-1)
$$

in agreement with (5.11).) If we rewrite (5.11) as

$$
\begin{aligned}
\sum_{t} R\left(t, L_{2 j+1} F_{2 k}\right) x^{t}=x^{2 j+1}\{1+ & x+\cdots+ \\
& \left.+x^{k-j-1}+\left(x+\cdots+x^{2 j-1}\right)\left(x+\cdots+x^{k-j-1}\right)\right\}
\end{aligned}
$$

we can easily evaluate $R\left(t, L_{2 j+1} F_{2 k}\right)$. In particular, we note that

$$
\begin{equation*}
R\left(t, L_{2 j+1} F_{2 k}\right)>0 \quad(j<k) \tag{5.12}
\end{equation*}
$$

if and only if

$$
2 \mathrm{j}+1 \leq \mathrm{t} \leq 3 \mathrm{j}+\mathrm{k}-1
$$

Note that, for $k=3 j$,
$\sum_{t} R\left(t, L_{2 j+1} F_{6 j}\right) x^{t}=x^{2 j+1}\left\{1+x+\cdots+x^{2 j-1}+\left(x+x^{2}+\cdots+x^{2 j-1}\right)^{2}\right\}$.

This example shows that the function $R(t, N)$ takes on arbitrarilylarge values. When $\mathrm{j}=\mathrm{k}$, we have

$$
\mathrm{L}_{2 \mathrm{k}+1} \mathrm{~F}_{2 \mathrm{k}}=\mathrm{F}_{4 \mathrm{k}+1}-1
$$

so that, by (3.4),

$$
\begin{equation*}
\sum_{t} R\left(t, L_{2 k+1} F_{2 k}\right) x^{t}=x^{2 k} \tag{5.13}
\end{equation*}
$$

Next, since

$$
L_{2 j+1} F_{2 k}=F_{2 j+2 k}+F_{2 j+2 k-2}+\cdots+F_{2 j-2 k-2} \quad(j>k)
$$

we get

Corresponding to (5.15), we now have

$$
\begin{equation*}
R\left(t, L_{2 j+1} F_{2 k}\right)>0 \quad(j>k>1) \tag{5.15}
\end{equation*}
$$

if and only if

$$
2 \mathrm{k} \leq \mathrm{t} \leq \mathrm{j}+3 \mathrm{k}-2
$$

The case $k=1$ is not included in (5.14), because (5.5) does not hold when $\mathrm{r}=0$. For the excluded case, since

$$
L_{2 j+1}=F_{2 j+2}+F_{2 j},
$$

we get, by Theorem 1,

$$
\begin{equation*}
\sum_{t} R\left(t, L_{2 j+1}\right) x^{t}=x^{2}+\left(x^{2}+x^{3}\right) \frac{x-x^{j}}{1-x} \quad(j \geq 1) \tag{5.16}
\end{equation*}
$$

For $t=1$, Eq. (5.16) reduces to the known result:

$$
R\left(L_{2 j+1}\right)=2 j-1
$$

In [1] a number of formulas of the type

$$
R\left(F_{2 n+1}^{2}-1\right)=F_{2 n+1} \quad(n \geq 0), \quad R\left(F_{2 n}^{2}\right)=F_{2 n} \quad(n \geq 1)
$$

were obtained. They depend on the identities

$$
\begin{aligned}
& F_{4}+F_{8}+\cdots+F_{4 n}=F_{4 n+1}^{2}-1 \\
& F_{2}+F_{6}+\cdots+F_{4 n+2}=F_{2 n}^{2}
\end{aligned}
$$

We now apply (5.10) to these identities. Then $G_{r}(x)$ is determined by

$$
\begin{equation*}
G_{r}(x)=\sum_{2 t \leq r}(-1)^{t}\binom{r-t}{t}[3]^{r-2 t} x^{r+2 t} \tag{5.17}
\end{equation*}
$$

Thus (5.10) yields

$$
\begin{equation*}
\sum_{t} R\left(t, F_{4 n+1}^{2}-1\right) x^{t}=x(1+x) G_{n-1}(x)-x^{4} G_{n-2}(x) \tag{5.18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{t} R\left(t, F_{2 n}^{2}\right) x^{t}=x G_{n-1}(x)-x^{4} G_{n-2}(x) \tag{5.19}
\end{equation*}
$$

with $G_{n-1}(x), G_{n-2}(x)$ given by (5.17).

It may be of interest to note that

$$
G_{r}(1)=\sum_{2 t \leq r}(-1)^{t}\binom{r-t}{t} 3^{r-2 t}=F_{2 r+2}
$$

6. The following problems may be of some interest.
A. Evaluate $M(N)$ in terms of the canonical representation of N.
B. Determine whether $R(t, N) \geq 1$ for all t in $m(N) \leq t \leq M(N)$.
C. Does $R(t, N)$ have the unimodal property? That is, for given N, does there exist an integer $\mu(\mathrm{N})$ such that

$$
\begin{array}{ll}
\mathrm{R}(\mathrm{t}, \mathrm{~N}) \leq \mathrm{R}(\mathrm{t}+1, \mathrm{~N}) & (\mathrm{m}(\mathrm{~N}) \leq \mathrm{t} \leq \mu(\mathrm{N})) \\
\mathrm{R}(\mathrm{t}, \mathrm{~N}) \geq \mathrm{R}(\mathrm{t}+1, \mathrm{~N}) & (\mu(\mathrm{N}) \leq \mathrm{t}<\mathrm{M}(\mathrm{~N})) ?
\end{array}
$$

D. Is $R(t, N)$ logarithmically concave? That is, does it satisfy
$\mathrm{R}^{2}(\mathrm{t}, \mathrm{N}) \geq \mathrm{R}(\mathrm{t}-1, \mathrm{~N}) \mathrm{R}(\mathrm{t}+1, \mathrm{~N}) \quad(\mathrm{m}(\mathrm{N})<\mathrm{t}<\mathrm{M}(\mathrm{N})) ?$
E. Find the general solution of the equation

$$
R(t, N)=1
$$

REFERENCES

1. L. Carlitz, "Fibonacci Representations," Fibonacci Quarterly, Vol. 6 (1968), pp. 193-220.
2. D. A. Klarner, "Partitions of N into Distinct Fibonacci Numbers," Fibonacci Quarterly, Vol. 6 (1968), pp. 235-244.
