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INTRODUCTION 

In attempting to predict the number of demands that will occur during a 
given period of time, for supplies in military inventory systems, it becomes 
necessary to formulate suitable probability models for the distribution of de-
mands of individual items of supply. One such model, described in [1] , in-
volves two parameters , to be estimated from available data. For example, 
in the case of predicting demands for items installed on Polaris submarines, 
the data might consist of items demanded in a series of patrols. 

In studying the properties of estimation procedures for parameters of 
any model, one is led to a consideration of the sampling distributions of the 
estimates. For the model described in [1] , the sampling distributions of some 
proposed estimates were found to involve Stirling numbers of the second kind, 
and in the derivation of these distributions from the initial probability assump-
tions, some properties of these numbers become of interest. 

A Stirling number of the second kind, J l , , is the number of ways of 
partitioning a set of T elements into m non-empty subsets. Thus, if we 
have the set of elements (1, 2, 3) with T = 3 and m = 2, we have 
sible partitions 

(1,2), (3) 
(1,3), (2) 
(2,3), (1) 

with 

, i 3 (2) = 3 . 

If the order of the partitions is taken into account, that i s , 

(1,2)L (3) , 
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and 

(3), (1,2). 

are considered to be two partitions, the number of ordered partitions is 

For example, suppose that a given item installed in aPolar is submarine 
is demanded in each of m partols, with a total quantity demanded of T units, 
(T ;> m)„ The number of different ways of partitioning T into m demands is 
0 T ; the number of ways in which a particular partition can be assigned to 
the m patrols is ml ; thus the number of possible assignments of the total 
quantity demanded to the m patrols is m!*L; • 

PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND 

The generating function of Stirling numbers of the second kind is 

T 

xT = J2 i i ^ x(x - 1) ••• fe - m + 1) . 
m=0 

In closed form, 

>*r = ^£ra<-«m-k* k=0 

Various properties of these numbers are known (e.g. , see [2]). Thus, 

J™ = 0 for T < m 

J ^ = 1 for T = 0, 1, 2, ••• 

J ^ 0 ) = 0 for T = 1, 2, ••• 

Jjp = 1 for T = 1, 2, ••• . 
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We have the recurrence relations 

(2) 4£rt = „jta> + ^toi-i) £or T , m 2 1 

If r = 1, Eq. (3) becomes 

(4) mJW - 2 (J)JM 
=m-l x f k=m-

The following results appear to be less well known. 
Lemma 1. For any integers r and k, with k = 0, 1, • • • , and r ; 

k + 1, k + 2, ••• , 

r 
(5) 

3 = ' =0 X ' 

Proof, We prove the lemma by induction on k. In the proof, we use 
the recurrences 

(r + k\ (r + k - l\ IT + k - l \ 

V j / = v J / I j - w 
and 

*r-j+k v r ] ' r-j+k-1 r-j+k-1 
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For k = 0 and r = 19 29 ° * * 9 

E(5)<-1) i iSj) = i : (;)(-!)' = a - »r = o 

For k = 1 and r = 2, 39 • •• , 

s ( r ; 1 ) « - i ) y ^ i " 2 ( j ) < - u U ^ 
f-j) 
-j+i 

i=o ' j=o 

r 
f-j) 
-j+l E^l)^!: 

j=0 

The last two terms cancel each other while the first one becomes 

r -1 

j=0 

r - i 

We suppose the result holds for k = m - 1, and r = m, m + 

and show that it holds for k = m, r = m + l , m + 2, 8 9 « „ We have 
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r 
f(r-j) 
r-j+m g(TH 

j=o x ' 

r - l 
+ 

r - l 

2(r + T-)<-^Si 
y- /r + m - l \ ( ^ ^ ( r - j - D 
T T \ / r - j+m-l 

Again the last two terms cancel each other. The first term becomes 

1=0 x ' 

r 
r 

3 

-(r-.wf (*-»,— ' j^^V, 
3=0 

Since r > m + 1 and (r - 1) > m, both of these sums are zero, giving the 
desired result. 

Lemma 2. For any integers m and T such that T >: 2m 
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T-2 . , m-1 

E m^EftV-^r-" 
k=2(m-l) x ' j=0 X / 

)-0 * I 
Proof. 

T-2 v m-1 

k=2(m-l) x ' i=0 \ / 

m-1 ^ T-j-2 
= Cm - 1)! 

j=0 x ' (k-j)=2(m-l)-j 
From Eq. (4), 

EI<-»J E. I:i,>£S-,-I) 

E1. (l.-jV^ - *-»<* • 
T-j - l 

E 
(k-j)=m-j-l 

It follows that 

T-j-2 / x T- j - l 
-j-D 

. l k - i / ^ k - i 
(k-j)=2(m-l)-j x ' (k-j)=m-j-l 

i - j-D 

E (lij)^-1'= E (T,:])^-
/ T - j W m - j - 1 
^T - j - 1/^T-j-l 

= (m - j)J£H> - (T - j ) ^ : ^ 

m-j-3 

E T;'VrH) • 

2m-J-3 

E (uHr1* 
(k-j)=m-j-l 

2m-j-3 

E 
r=m-j- l 
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The r ight-hand side of Eq. (7) becomes 
[March 

j=o V / 
7 j ) - (m - 1)! 

m - 1 

E TI (-1)3 «(m-J) 

(j - 1)! (T - J)! * T - J 
L i = i 

m - 2 

E TI (-D 3 j ( m - l - j ) 
J K T - 1 - j ) | * T - 1 - J 

j=0 

- (m - 1) 
m - 1 . v 2 m - 3 - j / \ 

j=0 x ' r=m-l-j V ' 

The two sums in b racke t s cancel each o the r s ince 

m - 1 

E Ti (-1)J o(m-j) 

(j - DKT^jTT^T-j 3=1 

m - 2 
V T!( -1) J j f (m- l - j ) 
Z - . j ! ( T - 1 - j ) ! ^ T - l - j 
j=0 

In the final t e r m , we se t k = (m - 1 - j) so that k ranges from zero to 
( m - 2 ) . Interchanging the o r d e r of summat ion and rewr i t ing the exp res s ion , 
we have 

(m - 1)! 
m - 1 . v 2 m - 3 - j / v 

j=0 x ' r=m-l-j v ' 

m - 2 

k=0 k m .THt)fE("rk)«jti 
' L j=o v I 

j+k | 

From Lemma 1, each of the inner sums is zero, so that Eq. (8) becomes 
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and the lemma follows. 
These properties are useful in proving the following theorems. 
Theorem 1, Let t i i ^ " - , ^ be m integers such that 

t. > 1 i = 1, 2, • • • , m 

and 

m 

i=l 
m 

Then 

(9) 
k t2 

T! 
£-* m 
m n t.s 

i = l x 

= m!« p(m) 

t 

Proof. We write 

ti + t2 = T2 

ti + t2 + . . . + t m = T m = T 

The summation in (9) can be rewritten as 

S — xL - Eft E ?I 
rm - 1 \ m i / L LT2=2 ' L T ^ I ^ / 
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But 

T , - l 

Tf*l X ' 

From Eq. (4), 

T2=2 ^ / 

and, in general, 

T -1 

<T-IM E ( T
T r W" 1 } = r l 4 r ) • 

T ^ i A T r - V T r - 1 T =(r-l) r 

and the theorem follows* 

Theorem 2. Let t j , t2, • • • , t m be m integers such that 

t. > 2 i = 1, 2, • • • , m 

and 

m 
S fci = T ^ 2m » 
i=l 

then 
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m 

£ £ • • • 2 — 2 1 — - mf V(T\f_i>J.!<m-J> 
tj t2 

m t n 1.1 
m i = i x 

Proof, Again, let 

t2 = Tj 

ti + t2 = T2 

ti + to + • • • + t = Tm = T 1 L m 

The desired summation can now be written as 

181 

T / \ rT 3"2/ \ 
£ T \ )••• L(?J 
= 2 ( m - l ) \ m - V To=4V 7 

T .=2(m-l) m-1 

T2-2 

TA=2 \ ' 

T 2 ~ 2 / \ 

Ti=2 X ' 

T 2 T 2 
2 - 2 - 2 

3=0 

Repeated application of Lemma 2 leads to the desired result. 
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