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Functions which can be represented in the s~dimensional unit interval by 
rapidly convergent Fourier series of unit period in each coordinate can be in-
tegrated numerically over this interval with great efficiency by averaging their 
values over all the points obtained by reducing modulo 1 the coordinates of the 
multiples of a suitable vector "g = <gi /p , ° 8 * , g ,/p> , where gl9 • • • r g , 

s s 
and p are integers. The crucial property of this vector can be described as 
follows: For any vector h" = <hif • • • , h > put 

s 

R(h) = max(l , h 4 ) ••• max(l , h ) s 
s 

and denote by p(g) the minimum of R(h) for all the vectors having integral 
coordinates not all zero, and satisfying 

g • h = 0 (mod 1) , 

where the dot denotes, as usual, the scalar product* Hlawka [5] describes 
pg as a good lattice point modulo p if 

(1) p (g ) > pCSlogp)1"8 i 

because upper bounds for the e r ro r of integration can be expressed as rapidly 
decreasing functions of (g ) , and he proves the existence of good lattice points 
modulo any prime for any number of dimensions. The requirement that p 
should be a prime was introduced only in order to facilitate the proof. Under-
standably, however, one assumes in any event (gi, M , , g . i p ) = l» so that 

s 
g generates exactly p different multiples modulo 1. Of course, here and in 

f From September, 1969 at the Centre deMecherchesMathe^atiques, Universite 
de Montreal, Montreal, Canada. 

JAs a result of a misprint, the exponent of 8 log p appears to be - s in 
Hlawka's paper, but his proof applies to lattice points satisfying (1). Thus 
his results are sharper than those of Korobov ( [7] , [8]). 
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what follows, by a multiple modulo 1 of any vector, we understand the result 
of reducing modulo 1 each coordinate of the multiple of the given vector. 

In the case of more than two dimensions no recipe other than trial and 
e r ror is known for finding good lattice points, and indeed such a recipe seems 
unlikely to exist. However, in two dimensions, the best lattice points in the 
sense of maximizing the ratio (g):p are obtained by putting 

P = F n , gi = 1, g2 = Fn__1 , 

where <F > are the Fibonacci numbers [9]. One finds, then, p(g) = F 0 , 
j n— & 

which is of a better order of magnitude than (1). 
The case when the integrand has not the required properties of period-

icity can be reduced to the periodic case. In the case of two dimensions, de-
noting the coordinates by x and y, we add to the integrand a suitable poly-
nomial in x with coefficients depending on y, and a polynomial in y with 
coefficients depending on x. The precise upper bounds for the e r ro r ( [9] , 
[ 12]) are too complicated to be discussed here in detail. Let it suffice to say 
that if the integrand f has partial derivatives up to 

a2rf 
dx d y r 

of bounded variation in the sense of Hardy and Krause (for a precise definition 
see, for instance [5] or [9]), and if we add to it suitable polynomials of degree 
r , this allows us to obtain the value of the integral with an e r ror of the order 

F log F by averaging f over the F points defined above. Trial 
computations carried out by this method [12] gave a very high degree of 
accuracy. For instance, taking r. = 3, the value of the integral over the unit 
square of exp (-x2 - 2y2) (true value 0.446708379 to nine decimals) was ob-
tained with eight correct decimals from n = 7 onwards, i . e . , using 13 or 
more points. 

The sets of points corresponding to n = 5, 6, and 7 are shown in Figs. 
1 , 2 , and 3. It will be seen that they define regular grids, and indeed square 
grids when n is odd. The importance of these grids lies not so much in the 
fact that they may be thought to be picturesque, as rather in conclusions of a 
far-reaching nature which can be drawn from their existence. 
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Fig. 1: n = 5 

Fig.2 :n = 6 Fig.3:n = 7 
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We begin, however, with a description of the grids themselves. It is 
easily seen that the sets of points in question form lattices. The lattice gen-
erated modulo 1 by the vector 

v = <F"1, F -F"^ 
n ' n-1 n 

will be denoted by L . It obviously has a base formed by the vectors V and 
"ej = <0, 1>. The more detailed nature of L depends on the parity of n. In 
its investigation, we shall repeatedly use the identities 

( 2 ) F m + l F n + l + F m F n " Fm-*H-1 

(see, for instance, I2e in [6]), and 

(3) F_ n = ( - l ) n + 1 F n . 

When n = 2[x + 1, an alternative basis of L is formed by the vectors 

V7 = < F M F I 1 ^ , - F -iFl1- , > and T2 = <F ^ F l * , -F F l * ->. 
1 ^ 2 j L t + l ' - / i - 1 2jLX+l L jLl+1 2 j L t + l ' -jll 2 / X + l 

Indeed, from (3) and from (2) with n = -2fx - 1 and with m = jit - 1 and 
m = jLi, respectively, we deduce 

F F 0 = -F - (mod F 9 , - ) 
[X 2jLt - / L l - 1 2jLt+l 

and 

jll+1 2j[i -jU 2jLt+l 

-so that 

F V = VA (mod 1) , 

and 
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Thus L 2 - contains the lattice generated by "Vj, and "V .̂ 
To prove that, conversely, L 2 - is contained in the lattice generated 

by Vj and "V f̂ we note that by (3)s 

while by (2) and (3), 

-F F - F F = 0 , 

F2 + F2 = F 

Hence 

- F -V- - F V0 = e0 . 
-jLl-1 1 -]Lt 2 2 

On the other hands by (3) and by (2) with m = -\x and with n = \x and n 
-\x - 1, respectively! we find 

and 

P - M P M + W M + 1 = Fl = X 

- F F - = F , F = F 9 , 
-JX -jtl-1 1-jU -jtl 2jLt 

so that 

F V- + F- VQ = V . 
-jU 1 1-jLt 2 

Thus Vi and V^ generate the same lattice as V and e^9 that is the lattice 

V+l' _ _ 
Since Vj and V2 are orthogonal and of equal length9 L 2 +- forms a 

grid of squares with sides inclined to the axes of coordinates. It will be seen 
that this grid is invariant with respect to rotations preserving the unit square. 
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Since clearly such rotations transform the grid into a parallel one, it suffices 
to show that a rotation by a right angle about the centre of the square t rans-
forms at least one lattice point into a lattice point. Now the point V of L0 

is transformed by such a rotation into the point 

<VlF2U'F21M-KL> " % - l ^ ( m ° d l ) ' 

since, by (2) with m = 1 - 2ju, n = 2JU, 

*VlF2„ B * <m0d * W 

Further rotations transform the point in question into 

These points form a square with vertices close to the sides of the unit square, 
but it does not follow that the sides of this new square are contained in the. grid 

formed by LQU+I* ^ i s s o ^ ' anc^ o n ^ ^* ^ i s e v e n » anc^ ^ s c a n ^ e s t ^ e 

seen as follows. 
By (I25) in [6] with n = ju, p = 1, or by Qio), we have 

<4) F ^ - + 1 - F M - 1 = F2M« 

and by (Ii9) in the same book, with n = \x - 1, k = 2, 

F2 = F F + (-1)^+ 1 

Hence 

FH+1(FM+1 " F M - 3 ) _ F2f* - X 

when jx is even. It follows that in this case, the abscissa of the point 
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IS 

^ F 2 M » 1 + F 2 J U ~ 1 ) F 2 jU+l 1 ~ F2M+1 

Since no pair of points L~ - in the unit square can have the same abscissa, 
this is necessarily the point 

<1 - F " 1 . F F " 1 > 

which was mentioned above as another vertex of the square in question. Let it 
be noted in passing that there are 4(F - - F ^) points of L 2 „ - on the 
perimeter of this square. In Fig* 1, this square is shown by thicker lines* 

When JU is odd* the ordinate of V2 is negative* Consequently, it is 
along V\ that we should attempt to move from 

< % - ! % + ! ' % + ! > 

to 

-1 -1 
K1 " F2JUH-1* F2jU-lF2iLi-H> e 

But by (2) with m = JU, n = JU - 1 , 

Wi-V-i* = *V • 
Hence if we add (F , - + F - )V- to the s t a r t i n g poin t , we obtain a point of 

jLt +1 ]LI - I 1 
abscissa 

<%-l + VF2iU = 1 ' 
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which shows that, for \x > 1, adding multiples of Vj to our starting point 
cannot produce a point of abscissa 1 - F~ + - . Thus indeed the square in 
question is not formed by the grid; this is illustrated in Fig. 3, where this 
square is marked in dotted lines. 

When n is even, say n = 2JU, the vectors 

v f = <F F l 1 , F F ; 1 > and v\ = <F . - F l 1 , F , F l 1 > 
jit 2 p t -jLA 2jLt * y+l 2JLT 1-jLt 2jtl 

form a basis of L 2 . Indeed, writing V as 

< F 2 M ' F1-2M
F2]U> ' 

we find, by easy applications of (2), 

(5) F V = v j (mod 1) and F +1V s Vj (mod 1) 

On the other hand, by (2) and (3), we find 

(6) F V» + F- V» == V and - F -V' - F V' = e 0 
-jLA 1 1 - j U 2 — jLt—X 1 - jLl 2 2 

but L 2 ] L | . 

Now (5) and (6) show that the lattice generated by V\ and V^ is nothing else 

^ - r - T 
However, VA and Vj are not orthogonal, their scalar product being 

since 

9 2 2 
(F F + F F )F = F F , 

fJL pi+1 - j i t 1-fJL 2fJL /Lt 2p t 

F F _ + F F- = F (F Ll - F - ) = F2 

[X j L l + 1 - ]L i l - ] L t jit j L t + 1 j t l - 1 jLl 

When n = 2jL4, L does not form a square grid; The determinant of LQ|I n u\x 
being equal to F~* , this would indeed require a pair of orthogonal vectors of 
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lengths F~"^ each. The cases of M = 2 and M = 3 being trivial, assume 
JU > 3. In our search for the required vectors, we can dismiss those which 
have a coordinate equal to, or bigger than, F XF~ in absolute value, since 
by (4), their length exceeds F~'* . All linear combinations o>V\ + (N\ in 
which p ^ 0 are thereby excluded because of their abscissa if « jSZo and 
because of their ordinate if afi < 0. There remain the multiples of "vf. But 
((78) in [1]) 

(7) FQ = F2 + 2F F , , ; 
2jLt jLt fX j t l + 1 ' 

This identity can also be deduced from (4) noting that 

F2 - F2 = F2 + 2F F 

It follows from (7) that when JU > 3, we have FQ > 2F2 , so that Vj is 
Ci fX jLl 

too short for our purposes, while 2V[ has an abscissa exceeding F - , so 
that it is too long. 

The figures representing the lattices with F 5 = 5, F 6 = 8, and F 7 = 
13 points show that in each case there is a relatively large number of lattice 
points on a straight line passing through the origin. In order to evaluate this 
number in general, we must again distinguish two cases according to the parity 
of n. 

If n = 2(JL + 1, one of the vectors Vj" and "V2 h a s both i t s coordinates 
positive, one being equal to 

FMF2M+1 

and the other to 

F F 

The origin being a lattice point, it follows that the line passing through it and 
parallel to the vector in question contains 
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rF2M+iF"Ai] + 1 

lattice points, where, as usual, [x] denotes the biggest integer not exceeding 
x. This number is easily determined as follows: By (2) and by (I13) in [6] , 
we have 

and 

xp2 + jp2 — y 
jU+1 jU 2JLH-1 

F F F2 = (-if 
H+l /Lt —X [i 

Hence 

Vl(Vl + V l > " F2M+1 + ('lf ' 

and consequently the number of lattice points on the line in question is 

When n = 2jit, one of the vectors V[ and Vj has its coordinates equal 
to F F~ and F - F " in either order. But by (2), 

FJU+1FJU + % F M - 1 = Ffy' 

and 

F F- + F ^ - F 0 = F 0 , 
jU, 1-fJL jU+1 2-jU 2 

or 
F F - F F = (-1)^ 
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Hence 

which shows that the line through the origin parallel to the vector mentioned 
above contains 

F , + V 2 + i ( 1 + (-1)P) 

points of L„ . 
Thus, in either case* there is a line, say 1, which contains a number of 

points of L n in the unit square which is of the order «v/TT". The importance 
of this fact is a consequence of the following considerations. 

Let S be any finite set of, say p points of the unit square 

0 < x < 1; 0 < y < 1 , 

and denote by P(X9J) the number of points of S with coordinates smaller than, 
or equal to, x and y, respectively. The function 

g(x,y) = p" i/(x,y) - xy 

can be regarded as describing the equidistribution of S oyer Q2. If a single 
number is required to characterize this equidistribution, it can be obtained by 
taking any of the plausible norms of g. In particular, it has been proposed 
( [1] , [11]) to call 

D(S) = sup Jg(x,y)| 
<x,yxEQ2 

the extreme discrepancy of S in order to distinguish it from other possible 
norms of g; the previously used term is simply discrepancy. If f is any 
function of bounded variation in the sense of Hardy and Krause over the closure 
of Q2, then its integral over Q2 is approximately equal to the average value 
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of f over the points of S, the absolute value of the e r ro r not exceeding VD(S), 
where V is the sum of the two-dimensional variation of f over Q2 in the 
sense of Vitali and of the (one-dimensional) variations of f(x,l) and f(l,y) 
over [0,1] ([3]; for a slight sharpening of this result, see [9]). 

Thus sets of points with low extreme discrepancies provide us with a 
method of numerical integration over Q2 even when the integrand cannot be 
expanded into a uniformly convergent Fourier series. In the case of the set of 
points determined by the multiples modulo 1 of V, the extreme discrepancy 
has been shown to be smaller than (7/6)F log (15 F ) [9]. However, the 
integrals we may want evaluated numerically do not necessarily lend them-
selves to a reduction to integrals over Q2. It might seem that, if the domain 
of integration, say D, is contained in Q2, we could replace the integrand by 
a function equal to it in D, and to O outside, integrating this new function 
over the whole of Q2; this is what would be likely to be done if the Monte 
Carlo method were applied. The difficulty lies in the fact that in general the 
new integrand will not be of bounded variation in the sense of Hardy and Krause 
over Q2, however regular the initially given function might be, and indeed 
even if it is a constant, consequently Hlawkafs theorem cannot be applied to this 
situation. 

The sets of points which have been described above show that even when 
the integrand is a constant, say 1, and the domain of integration i s , for in-
stance, convex, the integration er ror can be of the order of VF instead of 

-1 n 

that of F log F . To see this, it suffices to consider two lines, say 14 and 
12, on opposite sides of 1, parallel to it, and arbitrarily near to each other. 
Let D. be the part of Q2 above 1. (i = 1,2). Then the integrals over Dj 
and D2 will differ arbitrarily little, while the numerical values found for them 
will differ by the number of points of L on 1 divided by F , so that for 
one at least of the two integrals the e r ro r of the computation will indeed be of 

-4 the order of F 2. n 
When n = 2 jbt+ 1, JU, being even, by slightly expanding, or contracting 

„ the previously discussed square formed by the grid, it is possible to obtain a 
similar example of an integration domain leading to e r rors of the order of F~"2 

when applying the method in question; of course, many variations on this theme 
are possible. 
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All these considerations extend to an arbitrary number of dimensions, 
and the phenomenon illustrated by the lattice L in two dimensions becomes 
even more accentuated as the number of dimensions increases. The present 
author, impressed by the pattern of L n , proved [10] that if a set of p points 
of the s-dimensional unit interval Q s is generated by a good lattice point, 
then there exists an s-1-dimensional linear variety (or hyperplane, to use a 
rather old-fashioned terminology) which forms with Q s an intersection con-

1-s 1-l/s taining more than (4s) p ' points of the set. This leads again in an 
obvious way to an example of convex domains (actually simple polyhedral do-
mains) having the property that by integrating over them, by Hlawka!s method, 
arbitrarily regular functions, which could even reduce to constants, we are 

-1 / s always liable to commit e r rors of the order of p . 
This contrasts sharply with the e r ror committed when integrating over 

s the whole of Q a function of bounded variation in the sense of Hardy and 
Krause and using the same set of points; the discrepancy is then O (Log p) /p) 

4 , and the integration e r ror is of the same order of magnitude. With s > 2, 
in the former case the bound obtained for the e r ro r (and this is a sharp bound!) 
is much less favorable than that which is practically claimed by the Monte 
Carlo method, namely (3(p~2). 

The irrelevance of some traditional tests applied to so-called random 
numbers, or to pseudo-random numbers with a view to applications to Monte-
Carlo integration was discussed in detail by the present author 11 ; the con-
siderations adduced here show that when the domain of integration is not r e -
duced to a multidimensional unit interval, even discrepancy tests in the 
appropriate number of dimensions do not guarantee the success of Monte Carlo, 
although, naturally, nobody can be denied the right of hoping for the best. 
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