Theorem 2': If $r \geq 4$, there exists a positive integer N such that the minimal representation of N in $\left\{V_{n}\right\}$ is not Minimal. Specifically,

$$
\mathrm{N}=\mathrm{V}_{4 \mathrm{r}}+\mathrm{V}_{2 \mathrm{r}+3}+\mathrm{V}_{\mathrm{r}+1}=\mathrm{V}_{4 \mathrm{r}-1}+\mathrm{V}_{3 \mathrm{r}+2}
$$

The left side is in proper form for a minimal but the right side has fewer digits. One can easily find an infinite number of other exceptions for each r. For example, add $V_{5 r+j}$ to each side for $j=1,2,3, \cdots$.

One can secure a counterexample for the maximal which is not Maximal by subtracting each of those $N^{\prime} s$ above from

$$
\sum_{j=r}^{4 r+1} v_{j}
$$

REFERENCES

1. H. H. Ferns, "On the Representation of Integers as Sums of Distinct Fibonacci Numbers," Fibonacci Quarterly, 3 (1965), pp. 21-30.
2. S. G. Mohanty, "On a Partition of Generalized Fibonacci Numbers," Fibonacci Quarterly, 6 (1968), pp. 22-33.
3. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, 2 (1964), pp. 277-289.
4. Mark Feinberg, "Fibonacci-Tribonacci," Fibonacci Quarterly, 1 (1963), pp. 71-74.
5. Mark Feinberg, "New Slants," FibonacciQuarterly, 2 (1964), pp. 223-227.

ERRATA

Please make the following change in the article by London and Finkelstein, "On Fibonacci and Lucas Numbers which are Perfect Powers," Dec. 1969, p. 481:

Equation (14) should read: $\mathrm{Y}^{2}-500=\mathrm{X}^{3}$.

