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B-184 Proposed by Bruce W. King, Adirondack Community College, Glens Falls, New 
York. 

Let the sequence { T } satisfy T + 2 = T - + T with arbitrary initial 
conditions. Let 

g(n) ~ T2 T2 , Q + 4T2 ,- T2
 l 0 &v n n+3 n+1 n+2 

Show the following: 

(i) g(n) = < ^ + 1 + T ^ + 2 ) \ 
(ii) If T is the Lucas number L , g(n) = 25F2

 + 3 . 

(See Fibonacci Quarterly Problems H-101, October, 1968, and B-160, April, 
1969.) 

B-185 Proposed by L. Carlitz, Duke University, Durham, N. Carolina. 

Show that 

L- / L = L2 - (- l)nL0 - 1 5 n ' n 2n 2n 

325 
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B-186 Proposed by L. Carlitz, Duke: University, Durham, N. Carolina. 

Show that 

LK / L = TL0 - (-1)V|2 + (-l)n25F2 . 5n ' n L 2n J x n 

(For n even, this result has been given by D. Jarden in the Fibonacci Quar-
terly, Vol. 5 (1967), p. 346.) 

B-187 Proposed by Carl Gronemeijer, Saramtic Lake, N. York 

Find positive integers x and y, with x even, such that 

(x2 + y2)(x2 + x + y2)(x2 + | x + y2) = 1,608,404 . 

B-188 Proposed by A. G, Shannon, University of Papua and New Guinea, Boroko, Papua. 

Two circles are related so that there is a trapezoid ABCD inscribed in 
one and circumscribed in the other. AB is the diameter of the larger circle 
which has center O, and AB is parallel to CD. 9 is half of angle AOD. 
Prove that sin 0 = (-1 + V3) /2 . 

B-189 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let a0 = 1, a4 = 7, and a + 2 = a -a for n :> 0. Find the last 
digit (i. e. , units digit) of a999. 

SOLUTIONS 
GENERALIZATIONS OF SECOND-ORDER RECURRENCES 

B-166 Suggested by David Zeitlin's solutions to B-148, B-149, and B-150 

Let a and b be distinct numbers, U = (a - b ) / ( a - b ) , and V = 
a + b . Establish generalizations of the formulas 

(a) F , = F L L - - - L f 1 

( 2 t n ) n n 2n ^ t - l ^ 

<b> VlLn+3 + ^ R + 1 = 5 F n F n ^ 
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of B-148 and B-149 in which one dea l s with U and V ins tead of F and 
n n n 

L . n 

Solution by C. B. A. Peck, State College, Pennsylvania. 

(a) Since U V = U„ , induction on j f rom 1 yields 

U t = V t - 1 • " V t-1 U t i ' (2 n) (2l n) (2l 3n) (2l Jn) 

which, for j = t , i s the de s i r ed extension-

^ • n+1 n+3 ^ ^ * 

2n+4 _,_ , u x n+ l / u o , 2\ , i2n+4 , = a + (ab) (fcr + a^) + b + x 9 

while 

TT TT / n , n w n+4 , n + 4 W / ,v2 
y U n U n + 4 = y ( a " b ) ( a ~ b ) / ( a " b ) 

= [ a 2 n + 4 - ( a b ) V + a*) + b 2 n + 4 ] y / ( a - b>' . 

We can take, for instance, y = (a - b)2 and 

x = -(ab)n(b4 + a4) - (ab)n + 1(b2 + a2) = - (ab) n [b 4 + a4 + ab(b2 + a 2 ) ] 

= (ab)n(a2b2 - U5) . 

Then our generalization i s , for instance , 

V n + l V n + 3 + ^ ) n [ ( a b ) 2 - U , ] = (a - b ) 2 U n U n + 4 , 

which with a = (1 + V 5 ) / 2 and b = (1 - V"5)/2? s implif ies to the Fibonacci 

c a se in (b). 

Also solved by Wray G. Brady and David Zeitlin. 
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A LUCAS INEQUALITY 

B-167 Proposed by A. G. Shannon, University of Papua and New Guinea, Boroko, Papua 

th Le t L be the n Lucas number defined by Lj = 1, L2 = 3 , and 
L ,o = L ,- + L„ for n > 1. F o r which values of n is n+Z n+ l n — 

nL _,_- > (n + 1)L ? n+l n 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

The inequality holds for n = 1 and n = 3. Let i t hold for n = k > 3. 
Then 

(k + l ) L k + 2 = (k + l ) ( L k + 1 + L k ) > ( k + l ) L k + 1 + 2 L k > (k + l ) L k + 1 + L k 

+ L k - 1 = <k + 2 > L k + l -

s ince L k > 0 and L, > L, - for k 2 3. This p roves the inequality for 

n 2 3 by mathemat ica l induction; hence i t holds for al l posi t ive in t ege r s e x -

cept 2. 

Also solved by Herta T. Freitag, Peter A. Lindstrom, C. B. A. Peck, Gerald Satlow, John 
Wessner, and the Proposer. 

AN APPLICATION O F 1/7 

B-168 Proposed by S. H. L. Kung, Jacksonville University, Jacksonville, Florida. 

Using each of s ix of the nine posit ive digi ts 1, 2 , • • • , 9 exactly once , 

form an in teger z such that each of z , 2z , 3z9 4z , 5z, and 6z contains the 

s a m e s ix digi ts once and once only. 

Solution by Warren Cheves, Littleton, North Carolina. 

The solution i s z = 142857. This was obtained a s follows: 
Obviously, the f i r s t digit of z has to be 1. O the rwise , 6z would c o n -

tain m o r e than 6 digi ts . 
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Now cons ider the l a s t digit of z. It cannot be a 1. It cannot be a 2 , 4 , 

5, 6, o r 8, because these n u m b e r s when mult ipl ied by 5, 5, 4 , 5, and 5, r e -

spect ively , produce a l a s t digit of 0. This l eaves only 3 , 7, and 9 as possible 

candidates for the l a s t digit of z. 

Cons ider 

1 

2 

3 

4 

5 

6 

7 « 7 
7 = 14 

7 = 21 

7 * 28 

7 = 35 

7 = 42 

3 = 3 
3 = 6 

3 = 9 

3 = 12 

3 = 15 
3 = 18 

1 

2 

3 

4 

5 

6 

9 = 9 

9 = 18 

9 = 27 

9 = 36 

9 = 45 

9 = 54 

h e r e , the mul t ip les of both 3 and 9 have for thei r l a s t digi ts 6 different 

n u m b e r s , none of which i s the number 1. Hence , 7 m u s t be the l a s t digit of 

z. F u r t h e r m o r e , by looking at the l a s t digits of the mul t ip les of 7 (above), we 

see that the six digi ts of z mus t be 1, 2, 4 , 5, 7, 8, with 1 being the f i r s t 

and 7 the l a s t . 

The o r d e r of these six digi ts was found mainly by t r i a l and e r r o r . I n 

o ther w o r d s , mul t ip les of different combinations of the six digi ts we re c o m -

puted until ce r ta in e l iminat ions could be made . (I did find one hint: the " 8 " 

could not appear immedia te ly af ter the M 1 M o r e l se 6z would contain m o r e than 

6 d ig i t s . ) After my t r i a l and e r r o r method, I found that z = 142857 fitted 

the r equ i r emen t s of B-168. 

Also solved by Ed and Martha Clarke, Peter A. Lindstrom, John W. Milsom, C B. A. 
Peck, and the Proposer. 

A SEQUENCE OF IDENTITIES 

B-169 Proposed by C. C Yalavigi, Government College, Mercara, India. 

P r o v e the following iden t i t i es : 

(a) 

(b) 

F n + F n - 1 + F n + 1 = 2 ( F n F n - l ~ W * 

n n - 1 n+1 ° n n - 1 n + l l n n - 1 n + 1 ; ' 
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where Fi = F 2 = 1 and F , - = F + F .,. Show that these a r e two c a s e s 1 L n+1 n n - 1 
of an infinite sequence of ident i t ies . 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 

The f i r s t identi ty should r ead 

( a )
 F n + F n - 1 + F n + 1 = 2 ( F n + l " V n - 1 ) 2 • 

This follows f rom 

F 4 + F 4 - + F 4 = F 4 + F 4 + (F + F , )4 
n n - 1 n+1 n n - 1 n n - 1 

2(F4 + 2 F 3 F - + 3 F 2 F 2 . + 2F F 3 + F 4 ) n n n - 1 n n - 1 n n - 1 n - 1 

= 2(F2 + F F - + F 2 - )2 
n n n - 1 n - 1 

= 2(F2 - F F , ) . n+1 n n - 1 

S imi la r ly , to prove (b), we have 

F* - F 5 - F 5 - = (F + F - ) 5 - F 5 - F 5 -n+1 n n - 1 n n - 1 n n - 1 

= 5F F , ( F 3 + 2 F 2 F , + 2F F 2 , + F 3 - ) n n - 1 n n n - 1 n n - 1 n - 1 

= 5F F - (F + F - )(F2 + F F - + F 2 - ) n n - 1 n n - 1 n n n - 1 n - 1 

= 5F F F (F2 - F F ) . ° n n - r n + 1 l J n + 1 n n - l ; 

To get a genera l r e s u l t , we reca l l that Gauchy (see P . Bachmann, Das 

F e r m a t p r o b l e m in se ine r b i sher igen Entwickelung, B e r l i n , ; 1919, p . 31) ha s 

proven that if p i s a p r i m e > 3 , then 

(1) (x + y ) P - x P - y P = pxy(x + y)(x2 + xy + y2)f (x,y) , 

where f (x,y) i s a polynomial with in tegra l coefficients. F o r p = 1 (mod 3) 

t he r e i s the s t ronge r r e s u l t , 

(2) (x + y ) P - x P - y P = pxy(x + y)(x2 + xy + y 2 )g (x,y) , 
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where g (x,y) is a polynomial with integral coefficients. 
Substituting x = FQ, y = F ^ in (1) or (2), we get identities of the 

required kind. In particulars for p = 7, 

F7 ., - F7 - F7 = 7F F F (F2 - F F ) n+1 n n-1 n n-1 n+lv n+1 n n - l ; * 

For further results of this kind, see "Sums of Powers of Fibonacci and 
Lucas Numbers,," by L, Carlitz and J . A. H. Hunter, Fibonacci Quarterly, 
December, 1969, p. 467. 

Also solved by the Proposer. 

A PERIODIC SEQUENCE 
B170 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let the binomial coefficient I 1 be zero when m r and let 

4—A * / 

Show that S ^0 - S ^ + S = 0, and hence S l 0 = -S for n = 0, 1, n+^ n+1 n n+o n 
2, 

Solution by F. D. Parker, St. Lawrence University, Canton, New York. 

If 

then 

s ô - s • - + s = y (~i)i 
n+2 n+1 n -̂* 

j=0 
( " - ] + 2 ) - ( " - ] + i ) + ( - i i ; 



332 

But 
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( n - r 2 ) - ( " - i + i ) " ( ° i i +
1

1 ) • 

[April 

so that 

00 

Sn+2 "" Sn+1 + Sn 

Changing indices, we have 

E <-Dj (•^1)*(v! 

z (-Dj(n j + ! r J ) - E (-Dj+1(n • j ) = £ ( - W n • j ) 
j=0 V ' j=-l \ / j=o V ' 

and therefore 

S „ - S , + S = n+2 n+1 •-M-(v)-(v)|--
Using this identitsr, we have 

0 = Sn+3 " Sn+2 + S
n + 1 = Sn+3 " ( Sn+l " S n ) + Sn+1 • 

311(1 s o Sn+3 = "Sn • 
Also solved by A. K. Gupta, C. B. A. Peck, John Wessner, David Zeitlin, and the Proposer. 

ZeitLin noted the following: 
The Chebyshev polynomial of the second kind, U (x), satisfies 

Un+2(x) = 2xUn+1(x) - Un(x) , 

and is defined by 
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i -2j 

333 

oo 
Un(s) - £ <-l)>/n - A(2x)n-

Thus, 

I . e. 

S = U (1/2), n n ' 9 

n+2 n+1 n 

AVERAGING EIBONACCI AND PERIODIC SEQUENCES 

B-lll Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

0 for m < r , and let Let « . 

' • • £ ( • » " ) 
j=0 

Obtain a fourth-order homogeneous linear recurrence formula for T . 

Solution by A. K. Gupta, University of Arizona, Tuscon, Arizona. 

n+3 

since 

= £(°+^-2 )) 
j=o \ 

= h3)+£[H-2)) + ( a i - 2 ! ) ] • 
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Tn+3 Tn+2 + ^ 
J=: 

= T n+2 

= T - T 
n+2 • 

= T - T 
n+2 -

> / n + 2 - 2 j \ 

+ y f/n + 3 - 2j\ _ /n + 2 - 2j\l 

Y (n + 3 - 2j\ 
n ^ 2 j - l 

i=i x ' 

«^*tr)-^tr^ 

Thus we get 

= T n+2 T + (T A n v n+4 Tn+3> 

n+4 2T l 0 + T rt n+3 n+2 T = 0 . n 

Also solved by C. B. A. Peck, John Wessner, David Zeitlin, and the Proposer. 

[Continued from page 310.!} 
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