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L INTRODUCTION 

Several games of Tftake-away?f have become popular. The purpose of 
this paper is to determine the winning strategy of a general class of take-
away games, in which the number of markers which maybe removed each turn 
is a function of the number removed on the preceding turn. By-products of 
this investigation are a new generalization of Zeckendorfs Theorem [ 3 ] , and 
an affirmative answer to a conjecture of Gaskell and Whinihan [2]. 

Definitions: 
(1-1) Let a take-away game be defined as a two-person game in which 

the players alternately diminish an original stock of markers sub-
ject to various restrictions, with the player who removes the last 
marker being the winner** 

(1-2) A turn or move shall consist of removing a number of these 
markers . 

(1-3) Let the original number of markers in the stock be N(0). 
(1-4) After the k move there will be N(k) markers remaining. 
(1-5) The player who takes the first turn shall be called player A. The 

other player shall be called player B. 
(1-6) Let T(k) = N(k- 1) - N(k). That i s , T(k) is the number of 

markers removed in the k move. 
(1-7) The winning strategy sought will always be a forced win for Player 

A. 
All games considered in this paper are further restricted by the follow-

ing rules: 
(a) T(k) > 1 for all k = 1,2,-8 ' . 
(b) T(l) < N(0) (Thus, N(0) > 1.) 
(c) For all k = 2 , 3 , » " , T(k) < m, , where m, is some function of 

T ( k - 1). 

*This definition is essentially taken from Golomb [1]. 

225 



226 TAKE-AWAY GAMES [April 

Rule (a) guarantees that the game will terminate after a finite number of 
moves since the number of markers in the stock is strictly decreasing, and 
hence, must reach zero. Rule (b) dispenses with the uninteresting case of 
immediate victory. Rule (c) is the source of the distinguishing characteris-
tics of the various games which shall be considered. 

H. MOTIVATION 

Example (n-1) 

A simple game occurs when m, is defined to be constant, m, and we 
require f (1) — m. The well known strategy is: If N(0) ^ 0 mod (m + 1), 

remove N(0) mod (m + 1) markers . On subsequent moves, Player A 
selects T(2j + 1) to be equal to m + 1 - T(2j). 

If N(0) = Omod (m + 1), 
Player B can win by applying Player ATs strategy above. 

A simple way to express this result is to write the integer N(k) in a base m 
+ 1 number system. Thus, 

N(k) = a0 + a^m + 1) + a2(m + I)2 + ••• + a.(m+l)3 , 

where this representation is unique. Player Afs strategy is to remove a0 

markers , provided a0 ^ 0. If a0 = 0, Player A is faced with a losing 
position. 

This result suggests a connection between winning strategies and number 
systems. 
Example (IE-2) 

Consider the game defined by the rule m, = T(k - 1), the number of 
markers removed on the preceding move. In other words, T(k) <T(k - 1). 
To find a winning strategy, express N(0) as a binary number, e.g. , 12 = 
1100B. Define /N(0)/ as follows: If 

N = ( V n - l ' " a i a o ) B ' 

in the binary system, then 
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/ N / = an + an_1 + . . . + a i + a0 . 

If /N(0)/ = k > 1,. 
Player A removes a number corresponding to the last "one" in the bi-
nary expansion. (Thus, for N(0) = 12 = 1100 , Player A removes 
4 = 100 .) Now /N( l ) / = k - 1 > 0. Player B now has no move which 
reduces /N(l) / ; to do so, he would have to remove twice as many as 
the rules permit. In addition, any move Player B does make produces 
an N(2) such that Player A can again remove the last " 1 " in the expan-
sion of N(2)8 To see this, note that N(l) can be rewritten as 

V n - l ' " V ' - - 11)B
 + 1 B ' 

Now, since N(k) is strictly decreasing, it must reach zero. However, 
/ 0 / = 0 and / N / •> 0 for all positive integers N. Since Player B 
never decreases /N(k)/ , Player B cannot produce zero; hence, Player 
A must win. 

If, on the other hand, /N(0)/ = 1, 
it is clear that Player A cannot win because N(0) = 100 • • •• 0 = 11' • • 
1_. + 1 . Any move by Player A permits Player B to remove the last 
" 1 " in the expansion* thus applying the strategy formerly used by A 
above. 
Again we see a connection with number systems. A generalization of this 

method now suggests itself: Find a way to express every positive integer as a 
unique sum of losing positions. Then a losing position has norm 1. For any 
other position, the norm reducing strategy described above will work if, given 
Player ATs move, 

(i) Player B cannot reduce /N(k)/, and 
(ii) any move Player B does make permits Player A to reduce /N(k+1)/ . 

m . THE GENERAL GAME 

Now consider any game in which m, is a function of the number of 
markers removed on the preceding move; i. e. , let m = f(T(k - 1)). Suppose 
f(n) ^ n and f(n) ^ f(n - 1) for all positive integers, n. Note that example 
II-2 satisfied this hypothesis. We want f to be a monotonic nondecreasing 
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function so that if Player B removes more markers he cannot limit Player A 
to removing fewer markers and thus foil the norm reducing strategy. In addi-
tion, we want f(n) ^ n to guarantee the existence of a legal move at all t imes, 
and to permit the following definition: 

Definition (ni-1) 
Define a sequence (H.) by: Hj = 1 and H . + 1 = H . + H . where j is 

the smallest index such that f(H.) — H, . 
Clearly this is well defined because if the above inequality holds for no 

smaller j , at least we know it holds for j = k. 
Theorem (3II-2) 

that 
Every positive integer can be represented as a unique sum of H.fs, such 

n 
N = ^2 H. and f(H. ) < H. for i = 1, 2, • • • ,n ~ 1 . 

. = 1
 3i 3i 3i+l 

Proof 
The theorem is trivially true when N = 1, for Hi = 1 
Assume 

By induction, 
Assume that the theorem holds for all N < H, ; and let H, ^ N < H, -. 

n 

N = Hk + E H J. 
i=l x 

where f(H. ) < H. for i = 1,2,* •• ,n - 1. Thus, for the existence of a 
3i 3i+l 

representation, we need only show that f(H. ) < H,. Suppose f(H. ) — H,. 

Then recall that H, +- = H, + H^ where 
which f (Hg ̂  — H, . Hence j ^ i and so 
Then recall that H. - = H, + B.g where 4 is the minimal coefficient for 

H k + i = H k + H £ - H k + H
J n - N • 

contradicting the choice of N. Thus we have existence. 
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F o r un iqueness , note that: f(H. ) < H. impl ies 
Ji 32 

E H. < H. ,-
Jl 32+l 

i = l 

f(H. ) < H. impl ies 
J2 33 

3 

i= l 

f(H. ) < H. impl ies 
J n - 1 •'n 

n 

Z H. < H. J_1 

l. I +1 
i= i i n 

T h u s , for H, - > N > H, , the l a r g e s t t e r m in any sum for N m u s t be H, . 

If N has two r e p r e s e n t a t i o n s , so does N - H, , but this v iola tes the induction 

hypo the si s. T h u s , the r ep resen ta t ion i s unique. 

Definition (m-3) 

/ N / i s the number of t e r m s in the "H sum" for N. 

L e m m a (IH-4) 
If / N ( k ) / = 1 and the p l aye r cannot move N(k) m a r k e r s , then any move 

he does make p e r m i t s h i s opponent to reduce /N(k + 1)/* 

Proof 
F o r s impl ic i ty , l e t us a s s u m e that k i s odd. T h u s , we will prove that 

P l a y e r A can remove an appropr i a t e number of m a r k e r s so that /N(k + 2 ) / < 

/N(k + 1 ) / . 
Rewr i te N(k) = H. 

3o 
= H. , + H. 
: 30-1 Jl 

= H J o _ 1 + H J i _ 1 + . . . + H J n _ 1 + l 
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for some n where 

f(H. ) ^ H. , > f(H. , ) 
J i+1 J i * 3 i+ l x 

for i = 0, 1, • • • , n - 1„ Note that this i s equivalent to 

H. = H. - + H. 
3i k'1 3 i+ l 

Now P l a y e r B r emoves T(k + 1), with H. < T(k + 1) < H. for some i 
Ji+1 Ji 

between 0 and n , where H. = 1. P l a y e r A may remove up to 
Jn+1 

f(T(k + 1)) >f(HL ) 

Hence , P l a y e r A m a y e lec t to r emove 

3 i+ l 

and 

H. - T(k + 1 ) < H. - H. = H. _, 
3 i 3 i J i+1 J i 

N(k + 2) = H. . + • • • + H. -
J i - l " 1 JO"1 

Since f(H. _1 ) ^ H. 1 for i = l , 2 , - - - , n , we have /N(k + 2 ) / = i . 
T Ji Ji-1 Let 

/ H . - T(k + 1 ) / = a > 0 . 
h 

Now N(k + 1) = N(k + 2) + H. - T(k + 1). 
i Le t H# be the l a r g e s t t e r m in the H sum of H. - T(k + 1). C lea r ly 

Ji 
H , < H . T whence f(H*) < f(H. - ) < H. - . Thus 

3i 3i J i - 1 

/N(k + 1 ) / = I + a > i = /N(k + 2 ) / , 

and this comple tes the proof of the l e m m a . 
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T h e o r e m (III-5) 

Le t us cons ider a game defined by f satisfying the p r o p e r t i e s s ta ted 

above. Also l e t (H.) and the n o r m be defined a s above, 

If / N ( 0 ) / > 1, P l a y e r A can force a win. If / N ( 0 ) / = 1, P l a y e r B 

can force a win. 

Proof 

If / N ( 0 ) / > 1, 

l e t N(0) = H. + • • • + H j n with f(Hj.) < H - j . + r P l a y e r A r e -

moves H. . Since P l a y e r B can remove a t m o s t f(H. ) < H. i t 
J2 Jl 32 

is clear that Player B cannot reduce /N( l ) / or affect any of the 
last n - 2 terms in the sum, so we may just as well consider n « 
2. Now we invoke Lemma (HI-4)* so Player A can reduce / JN(2 ) / . 

Thus, Player A can force a win. 
If /N(0)/ = 1, 

Since Player A cannot remove N(0) markers , Lemma (ni-4) tells 
us that Player B will be able to reduce /N( l ) / . If /N( l ) / = 1, 
this means that he can remove N(l) and win immediately. If 
/N( l ) / > 1, Player B can apply Player A!s strategy from the first 
part of this proof. Thus, Player B can force a win. 

IV. BY-PRODUCTS 

In the case when f(T(k - 1)) = 2T(k - 1), the foregoing results produce 
the conclusions of Whinihan and Gaskell [2] regarding "Fibonacci Nim," We 
note that in this case: 

Hj = 1 
H2 = Hj + Hj = 2 
H3 = H2 + Hj = 3 

and in general, if 

H . = H . - + H . 0 n- i n - i - 1 n - i - 2 

for i = 09 1, and 2, then 
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2 H n - 3 ^ H n - 2 > 2 H n - 4 
2 H n - 2 * H n - 1 > 2 H n - 3 

So 

2H 1 ^ H > 2H 0 n - 1 n n -2 

by adding the inequal i t ies above. Hence H + - = H + H - . This p r o c e s s 

continues by induction so that the sequence (H.) i s indeed the sequence of 

Fibonacci n u m b e r s . 

Also in this c a s e , T h e o r e m (III-2) becomes "Zeckendorf ' s t heo rem" [3], 

which s t a t e s that every posit ive in teger can be uniquely exp res sed a s a Fibon-

acci sum with no two consecut ive subsc r ip t s appear ing. 

Another in te res t ing fact , conjectured by Whinihan and Gaskell [ 2 ] , i s 

that for the game m, = cT(k - 1), where c i s any r ea l number ^ 1 , (H.) 
m u s t become a s imple r e c u r s i o n sequence for sufficiently l a r g e subsc r ip t s ; 

i . e . , t he re ex is t i n t ege r s k and n0 such that H ,- = H + H , for al l & u n+1 n n -k 
n ;> n0. Le t us now cons ider how to p rove the conjec ture , and how to calculate 

k and n0 a s a function of c. 

L e m m a (IV-1) 

If cH. , < H. < cH. , then c H . ^ ^ H .^ , . 
I - I j ~ r I + I j+1 

Proof 

Since cH. < H. <i.cH., we m u s t have H . ^ = H. + H.. Also , H . , n = i - I j I 3+1 J i i+ l 
H. + H, where cH, ^ H.. Now 

I k k I 

c H . + 1 - cH. + cH k 

> c H . + H. 
- l l 

> H. + H. = H.J_1 . - J i J+1 

T h e o r e m (IV-2) 

T h e r e ex i s t s an in teger k such that cH , < H for al l n > k. 
n—Ac n 

Proof 
Since E.^ = H. + H. where cH. ^ H. , i t follows that 

J+1 J i i J 
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H., 

^H-
If we choose k such that 

H)k > c , 

then 

VJltAk>. 
H j-k+ l HJ 

T h u s , cH. . < H. for al l j > k. This comple tes the proof of the theorem. 
Coro l l a ry (IV-3) 

(H ) mus t become a s imple r ecu r s ion sequence for sufficiently l a rge n. 
Proof 

L e m m a (IV-1) says that the difference between success ive indices a s 

desc r ibed before is monotonically nondecreas ing . T h e o r e m (IV-2) says that 

the sequence of differences i s bounded. Thus the difference m u s t be constant 

for al l l a r g e n. Th is i s equivalent to saying that (H ) i s a r e c u r s i o n sequence 

for n ^ r n0. Q. E . D . 
T h e o r e m (IV-4) 

If H. . + 1 = H.+.. + H . + i _ k for some j , and for i = 0, l , - - - , k + 1, 

then this equation holds for eve ry posit ive in teger i . 

Proof 
By induction, we need only show that H . + k + 3 = H . + k + 2 + H. + 2 - By def i -

ni t ion, H. , , l 0 = H. , , ,- + H . , - impl ies cH. < H. , , ,- < c H . , - . H . , - = H. + 
3+k+2 j+k+1 j+1 p j j+k+1 ^ j+1 j+1 3 

H. , impl ies 
3 -k F 

cH. , < H.^- < cH. , _,_- , 
3-k 3+1 - 3-k+l 

whence 

c(H. + H. . ) < H . M _,, + H.^- < c O L ^ + H. . ^ ) , J j - k ' 3+k+l 3+1 3+1 J-k+1 
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or 

c H j+ l < Hj+k+2 * cHj+2 ' 

SO H
j + k + 3 = H j + k + 2 + Hj+2- Q - E - D -
This theorem tells us that k has reached the recursion value when k has 

been the difference for k + 2 successive indices. 

V. CONCLUSION 

We have discovered some interesting properties of take-away games and 
their winning strategies. The subject, however, is by no means exhausted. 

For example, in Theorem (IV-4) we showed that for every _c > 1 there 
exists a k such that . . . . By inspection, I have found: 

If c = 1 then k = 0 
= 2 = 1 
= 3 = 3 
= 4 = 5 
= 5 = 7 
= 6 = 9 
= 7 = 12 
= 8 = 1 4 

It is not clear whether or not a simple relation exists between c and k. 
In Section IV, we found that f(x) = ex gives rise to a recursion rela-

tion for (H.). Other special cases of f can be studied, to learn about the 
corresponding sequence (H.); or one might try to reverse the approach by 
proceeding from (H.) to f, as opposed to the approach taken in this paper. 

It is also possible to generalize in other ways. For example, if f(n) 
and g(n) satisfy the hypotheses of Section EI, then (f+ g)(n) = f(n) + g(n) 
and (fg)(n) = f(n)g(n) also satisfy the hypotheses. Can the corresponding 
strategies and sequences be related? Can the procedure be generalized for 
functions which are not monotonic? These problems are suggested for those 
interested in pursuing the subject further. 
[Continued on page 241. ] 


